478 resultados para CONJECTURE
Resumo:
We study the question on whether the famous Golod–Shafarevich estimate, which gives a lower bound for the Hilbert series of a (noncommutative) algebra, is attained. This question was considered by Anick in his 1983 paper ‘Generic algebras and CW-complexes’, Princeton Univ. Press, where he proved that the estimate is attained for the number of quadratic relations $d\leq n^2/4$
and $d\geq n^2/2$, and conjectured that it is the case for any number of quadratic relations. The particular point where the number of relations is equal to $n(n-1)/2$ was addressed by Vershik. He conjectured that a generic algebra with this number of relations is finite dimensional. We announce here the result that over any infinite field, the Anick conjecture holds for $d \geq 4(n2+n)/9$ and an arbitrary number of generators. We also discuss the result that confirms the Vershik conjecture over any field of characteristic 0, and a series of related
asymptotic results.
Resumo:
Soit G = (V, E) un graphe simple fini. Soit (a, b) un couple d’entiers positifs. On note par τ(G) le nombre de sommets d’un chemin d’ordre maximum dans G. Une partition (A,B) de V(G) est une (a,b)−partition si τ(⟨A⟩) ≤ a et τ(⟨B⟩) ≤ b. Si G possède une (a, b)−partition pour tout couple d’entiers positifs satisfaisant τ(G) = a+b, on dit que G est τ−partitionnable. La conjecture de partitionnement des chemins, connue sous le nom anglais de Path Partition Conjecture, cherche à établir que tout graphe est τ−partitionnable. Elle a été énoncée par Lovász et Mihók en 1981 et depuis, de nombreux chercheurs ont tenté de démontrer cette conjecture et plusieurs y sont parvenus pour certaines classes de graphes. Le présent mémoire rend compte du statut de la conjecture, en ce qui concerne les graphes non-orientés et ceux orientés.
Resumo:
The Bieberbach conjecture about the coefficients of univalent functions of the unit disk was formulated by Ludwig Bieberbach in 1916 [Bieberbach1916]. The conjecture states that the coefficients of univalent functions are majorized by those of the Koebe function which maps the unit disk onto a radially slit plane. The Bieberbach conjecture was quite a difficult problem, and it was surprisingly proved by Louis de Branges in 1984 [deBranges1985] when some experts were rather trying to disprove it. It turned out that an inequality of Askey and Gasper [AskeyGasper1976] about certain hypergeometric functions played a crucial role in de Branges' proof. In this article I describe the historical development of the conjecture and the main ideas that led to the proof. The proof of Lenard Weinstein (1991) [Weinstein1991] follows, and it is shown how the two proofs are interrelated. Both proofs depend on polynomial systems that are directly related with the Koebe function. At this point algorithms of computer algebra come into the play, and computer demonstrations are given that show how important parts of the proofs can be automated.
Resumo:
Let k be a quadratic imaginary field, p a prime which splits in k/Q and does not divide the class number hk of k. Let L denote a finite abelian extention of k and let K be a subextention of L/k. In this article we prove the p-part of the Equivariant Tamagawa Number Conjecture for the pair (h0(Spec(L)),Z[Gal(L/K)]).
Resumo:
We give a proof of Iitaka's conjecture C2,1 using only elementary methods from algebraic geometry.
Resumo:
This is a study of singular solutions of the problem of traveling gravity water waves on flows with vorticity. We show that, for a certain class of vorticity functions, a sequence of regular waves converges to an extreme wave with stagnation points at its crests. We also show that, for any vorticity function, the profile of an extreme wave must have either a corner of 120° or a horizontal tangent at any stagnation point about which it is supposed symmetric. Moreover, the profile necessarily has a corner of 120° if the vorticity is nonnegative near the free surface.
Resumo:
One of the key tenets in Wittgenstein’s philosophy of mathematics is that a mathematical proposition gets its meaning from its proof. This seems to have the paradoxical consequence that a mathematical conjecture has no meaning, or at least not the same meaning that it will have once a proof has been found. Hence, it would appear that a conjecture can never be proven true: for what is proven true must ipso facto be a different proposition from what was only conjectured. Moreover, it would appear impossible that the same mathematical proposition be proven in different ways. — I will consider some of Wittgenstein’s remarks on these issues, and attempt to reconstruct his position in a way that makes it appear less paradoxical.
Resumo:
The objective of this paper is to reconsider the Maximum Entropy Production conjecture (MEP) in the context of a very simple two-dimensional zonal-vertical climate model able to represent the total material entropy production due at the same time to both horizontal and vertical heat fluxes. MEP is applied first to a simple four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its resolution, and compare it with GCM output. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. This study suggest that the thermal meridional structure of the atmosphere is predicted fairly well by MEP once the insolation is given but the vertical structure of the atmosphere cannot be predicted satisfactorily by MEP unless constraints are imposed to represent the determination of longwave absorption by water vapour and clouds as a function of the state of the climate. Furthermore an order-of-magnitude estimate of contributions to the material entropy production due to horizontal and vertical processes within the climate system is provided by using two different methods. In both cases we found that approximately 40 mW m−2 K−1 of material entropy production is due to vertical heat transport and 5–7 mW m−2 K−1 to horizontal heat transport
Resumo:
We study stagnation points of two-dimensional steady gravity free-surface water waves with vorticity. We obtain for example that, in the case where the free surface is an injective curve, the asymptotics at any stagnation point is given either by the “Stokes corner flow” where the free surface has a corner of 120°, or the free surface ends in a horizontal cusp, or the free surface is horizontally flat at the stagnation point. The cusp case is a new feature in the case with vorticity, and it is not possible in the absence of vorticity. In a second main result we exclude horizontally flat singularities in the case that the vorticity is 0 on the free surface. Here the vorticity may have infinitely many sign changes accumulating at the free surface, which makes this case particularly difficult and explains why it has been almost untouched by research so far. Our results are based on calculations in the original variables and do not rely on structural assumptions needed in previous results such as isolated singularities, symmetry and monotonicity.
Resumo:
We address two problems with the structure and representation theory of finite W-algebras associated with general linear Lie algebras. Finite W-algebras can be defined using either Kostant`s Whittaker modules or a quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of finite W-algebras. The second main result is a parameterization of finite families of irreducible Gelfand-Tsetlin modules using Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Gelfand-Tsetlin modules for finite W-algebras. (C) 2009 Elsevier Inc. All rights reserved.