996 resultados para CO stretching bands
Resumo:
We have used our new pulsed CO(2) laser, operating both on regular and hot bands, to excite the (13)CD(3)OH methanol isotopomer. This has lead to the observation of 13 new high-threshold far-infrared laser emissions (also identified as terahertz laser lines), with frequencies in the range between 24.11 and 102.56 cm(-1) (0.72-3.07 THz). The absorption transitions leading to these new FIR laser emissions have been located by observing the optoacoustic absorption spectra around the CO(2) emissions. Here, we present these new far-infrared laser lines, characterized in wavelength, polarization, offset relative to the center of the pumping CO(2) laser transition, relative intensity, and optimum operation pressure.
Resumo:
Four new heterobimetallic metal carbonyls were synthesized by the reaction of [W(CO)4(bipy)] (1) with copper(I) compounds leading to species with the general formula [W(CO)4(bipy)(CuX)] (X = Cl, N3, ClO4, BF4) (2-5). The metal carbonyl compounds were characterized by elemental analysis, infrared and UV -visible electronic spectroscopy and thermogravimetric analysis. The IR data for 2-5 show carbonyl stretching band patterns similar to compound 1 ; ie they exhibit the same number of bands. The UV - vis results show a dissociation reaction generating the starting compound 1 and CuX as consequence of a weak interaction between 1 and CuX. Thermal decomposition mechanisms as well as the thermal stability are influenced by the CuX fragments. The thermal stability decreases in the order [W(CO)4(bipy)] > [W(CO)4(bipy)(CuCl)] > [W(CO)4(bipy) (CuBF4)]. The X-ray results show the formation of WO3, CuWO4, Cu2O and CuO as final decomposition products.
Resumo:
Perception of Mach bands may be explained by spatial filtering ('lateral inhibition') that can be approximated by 2nd derivative computation, and several alternative models have been proposed. To distinguish between them, we used a novel set of ‘generalised Gaussian’ images, in which the sharp ramp-plateau junction of the Mach ramp was replaced by smoother transitions. The images ranged from a slightly blurred Mach ramp to a Gaussian edge and beyond, and also included a sine-wave edge. The probability of seeing Mach Bands increased with the (relative) sharpness of the junction, but was largely independent of absolute spatial scale. These data did not fit the predictions of MIRAGE, nor 2nd derivative computation at a single fine scale. In experiment 2, observers used a cursor to mark features on the same set of images. Data on perceived position of Mach bands did not support the local energy model. Perceived width of Mach bands was poorly explained by a single-scale edge detection model, despite its previous success with Mach edges (Wallis & Georgeson, 2009, Vision Research, 49, 1886-1893). A more successful model used separate (odd and even) scale-space filtering for edges and bars, local peak detection to find candidate features, and the MAX operator to compare odd- and even-filter response maps (Georgeson, VSS 2006, Journal of Vision 6(6), 191a). Mach bands are seen when there is a local peak in the even-filter (bar) response map, AND that peak value exceeds corresponding responses in the odd-filter (edge) maps.
Resumo:
We have characterized the maturation, co- and posttranslational modifications, and functional properties of the alpha(1B)-adrenergic receptor (AR) expressed in different mammalian cells transfected using conventional approaches or the Semliki Forest virus system. We found that the alpha(1B)-AR undergoes N-linked glycosylation as demonstrated by its sensitivity to endoglycosidases and by the effect of tunicamycin on receptor maturation. Pulse-chase labeling experiments in BHK-21 cells demonstrate that the alpha(1B)-AR is synthesized as a 70 kDa core glycosylated precursor that is converted to the 90 kDa mature form of the receptor with a half-time of approximately 2 h. N-Linked glycosylation of the alpha(1B)-AR occurs at four asparagines on the N-terminus of the receptor. Mutations of the N-linked glycosylation sites did not have a significant effect on receptor function or expression. Surprisingly, receptor mutants lacking N-linked glycosylation migrated as heterogeneous bands in SDS-PAGE. Our findings demonstrate that N-linked glycosylation and phosphorylation, but not palmitoylation or O-linked glycosylation, contribute to the structural heterogeneity of the alpha(1B)-AR as it is observed in SDS-PAGE. The modifications found are similar in the different mammalian expression systems explored. Our findings indicate that the Semliki Forest virus system can provide large amounts of functional and fully glycosylated alpha(1B)-AR protein suitable for biochemical and structural studies. The results of this study contribute to elucidate the basic steps involved in the processing of G protein-coupled receptors as well as to optimize strategies for their overexpression.
Resumo:
Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses 50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO2 films.
Resumo:
The series of compounds cis-[Fe(CO)4(HgX)2], X=Cl,Br,I shows an octahedral geometry around the iron atom with the two HgX groups cis to each other. In this paper the assignment for the carbonyl stretching modes and the calculation of their force constants were performed on the basis of the Cotton-Krainhanzel model. Taking into account all the data from the IR, 199Hg NMR and UV-vis spectra it is possible to verify the influence of X on the electronic densities at the metallic centers.
Resumo:
Brands have become one of the most valuable assets for organizations, which is why organizations want to benefit from them in whole scale. However, service concept brands are still little researched. The purpose of this research is to study how brand stretching and co-branding strategies can help a service concept brand to attain wider target market. More specifically, this research aims to contribute the methods and their risks and benefits to different customer levels of a group fitness brand. This study is a qualitative single case analysis embedded with multiple units of analysis. The data used in this study was gathered by nine theme interviews. The interviewees are from one of the customer levels of the service concept provided by the case organization. The interviews are made in different geographical areas in Finland. The results of the study will clarify and illustrate the differences and similarities between the theoretical framework and practise. Several differences between traditional brand stretching and co-branding strategies and those that are possible to employ by a service concept brand were found. The answers of the interviewees were slightly different depending on their role in the organization and their experience from the branch. However, they proved that not all brand stretching or co-branding strategies are applicable in the group fitness brand. Nevertheless, also several similarities that benefit the group fitness brand were found.
Resumo:
This study examines the use of di erent features derived from remotely sensed data in segmentation of forest stands. Surface interpolation methods were applied to LiDAR points in order to represent data in the form of grayscale images. Median and mean shift ltering was applied to the data for noise reduction. The ability of di erent compositions of rasters obtained from LiDAR data and an aerial image to maximize stand homogeneity in the segmentation was evaluated. The quality of forest stand delineations was assessed by the Akaike information criterion. The research was performed in co-operation with Arbonaut Ltd., Joensuu, Finland.
Resumo:
TITLE: The normal co-ordinate analysis, vibrational spectra and theoretical infrared intensities of some thiocarbonyl halides. AUTHOR: J. L. Brema SUPERVISOR: Dr. D. C. Moule NUMBER OF PAGES: 89 ABSTRACT: The vibrational assignment of the five-in-plane fundamental modes of CSClBr has been made on the basis of infrared gas phase and liquid Raman spectral analyses to supplement our earlier vibrational studies. Even though the one out-of-plane fundamental was not observed spectroscopically an attempt has been made to predict its frequency. The vibrational spectra contained impurity bands and the CSClBr assignment was made only after a thorough analysis of the impurities themselves. A normal co-ordinate analysis calculation was performed assuming a Urey-Bradley force field. This calculation yielded the fundamental frequencies in good agreement with those observed after refinement of the originally transferred force constants. The theoretical frequencies are the eigenvalues of the secular equation and the calculation also gave the corresponding eigenvectors in the form of the very important LLj matrix. The [l] matrix is the transfoirmation between internal co-ordinates and normal co-ordinates and it is essential for Franck-Condon calculations on electronically excited molecules and for infrared Integrated band intensity studies. Using a self-consistent molecular orbital calculation termed "complete neglect of differential overlap" (CNDO/2) , theoretical values of equilibrium bond lengths and angleswere calcuted for a series of carbonyl and thlocarbonyl molecules. From these calculations valence force field force constants were also determined but with limited success. With the CNIX)/2 method theoretical dipole moment derivatives with respect to symmetrized internal co-ordinates were calculated and the results should be useful in a correlation with experimentally determined values.
Resumo:
Indenture between Park Lawn Cemetery Co. Ltd. of Toronto, deed no.2905 for Lot 91 in section H for 156 feet for burial ground paid by Percy C. Bands [Band], Feb. 24, 1926.
Resumo:
Receipts from the Park Lawn Cemetery Co. Ltd., Bloor St. West, Toronto. Receipt no. 851 for payment in full for a Lot no.91 in section H received from Percy C. Bands [Band]. Receipt no. 852 for payment for corner stones for Lot no.91 in section H received from Percy C. Bands [Band]. The unnumbered receipt is for opening an adult grave for Sarah Lawrence. Payment was received from Percy C. Bands [Band], Feb. 23, 1926.
Resumo:
The Raman and FTIR spectra of [C(NH2)3]2M(SO4)2 ·6H2O (withM= Co, Fe, Ni) were recorded and analysed. The observed spectral bands are assigned in terms of vibrations of guanidinium ions, sulphate groups and water molecules. The analysis shows that the sulphate tetrahedra are distorted from their free state symmetry Td to C1. This is attributed to the presence of hydrogen bonds from water molecules. The order of distortion of the metal oxygen octahedra influenced the distortion of the sulphate tetrahedra. The appearance of 1– 3 modes of water molecules above 3300 cm−1 indicates the presence of weak hydrogen bonds
Resumo:
The mathematical difficulties which can arise in the force constant refinement procedure for calculating force constants and normal co-ordinates are described and discussed. The method has been applied to the methyl fluoride molecule, using an electronic computer. The best values of the twelve force constants in the most general harmonic potential field were obtained to fit twenty-two independently observed experimental data, these being the six vibration frequencies, three Coriolis zeta constants and two centrifugal stretching constants DJ and DJK, for both CH3F and CD3F. The calculations have been repeated both with and without anharmonicity corrections to the vibration frequencies. All the experimental data were weighted according to the reliability of the observations, and the corresponding standard errors and correlation coefficients of the force constants have been deduced. The final force constants are discussed briefly, and compared with previous treatments, particularly with a recent Urey-Bradley treatment for this molecule.
Resumo:
Previously published data on the vibrational fundamentals and overtones of the carbonyl stretching modes of Ni(CO)4 and Co(CO)3NO are reinterpreted using the recent model of Mills and Robiette, including Darling-Dennison resonances and local mode effects. The harmonic wavenumber θm and anharmonicity constant xm associated with the carbonyl and nitrosyl stretching modes are derived, and the 13C and 18O isotopic shifts are discussed in relation to the harmonic and anharmonic force field.
Resumo:
In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.