997 resultados para CLOCK GENES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mosquitoes are the culprits of some of the most important vector borne diseases. A species’ potential as a vector is directly dependent on their pattern of behaviour, which is known to change according to the female’s physiological status such as whether the female is virgin/mated and unfed/blood-fed. However, the molecular mechanism triggered by and/or responsible for such modulations in behaviour is poorly understood. Clock genes are known to be responsible for the control of circadian behaviour in several species. Here we investigate the impact mating and blood-feeding have upon the expression of these genes in the mosquito Aedes aegypti . We show that blood intake, but not insemination, is responsible for the down-regulation of clock genes. Using RNA interference, we observe a slight reduction in the evening activity peak in the fourth day after dstim injection. These data suggest that, as in Drosophila , clock gene expression, circadian behaviour and environmental light regimens are interconnected in Ae. aegypti .

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sleep deprivation (SD) results in increased electroencephalographic (EEG) delta power during subsequent non-rapid eye movement sleep (NREMS) and is associated with changes in the expression of circadian clock-related genes in the cerebral cortex. The increase of NREMS delta power as a function of previous wake duration varies among inbred mouse strains. We sought to determine whether SD-dependent changes in circadian clock gene expression parallel this strain difference described previously at the EEG level. The effects of enforced wakefulness of incremental durations of up to 6 h on the expression of circadian clock genes (bmal1, clock, cry1, cry2, csnk1epsilon, npas2, per1, and per2) were assessed in AKR/J, C57BL/6J, and DBA/2J mice, three strains that exhibit distinct EEG responses to SD. Cortical expression of clock genes subsequent to SD was proportional to the increase in delta power that occurs in inbred strains: the strain that exhibits the most robust EEG response to SD (AKR/J) exhibited dramatic increases in expression of bmal1, clock, cry2, csnkIepsilon, and npas2, whereas the strain with the least robust response to SD (DBA/2) exhibited either no change or a decrease in expression of these genes and cry1. The effect of SD on circadian clock gene expression was maintained in mice in which both of the cryptochrome genes were genetically inactivated. cry1 and cry2 appear to be redundant in sleep regulation as elimination of either of these genes did not result in a significant deficit in sleep homeostasis. These data demonstrate transcriptional regulatory correlates to previously described strain differences at the EEG level and raise the possibility that genetic differences underlying circadian clock gene expression may drive the EEG differences among these strains.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The timely regulation of gonadotropin-releasing hormone (GnRH) secretion requires a GABAergic signal. We hypothesized that GEC1, a protein promoting the transport of GABA(A) receptors, could represent a circadian effector in GnRH neurons. First, we demonstrated that gec1 is co-expressed with the GABA(A) receptor in hypothalamic rat GnRH neurons. We also confirmed that the clock genes per1, cry1 and bmal1 are expressed and oscillate in GnRH secreting GnV-3 cells. Then we could show that gec1 is expressed in GnV-3 cells, and oscillates in a manner temporally related to the oscillations of the clock transcription factors. Furthermore, we could demonstrate that these oscillations depend upon Per1 expression. Finally, we observed that GABA(A) receptor levels at the GnV-3 cell membrane are timely modulated following serum shock. Together, these data demonstrate that gec1 expression is dependent upon the circadian clock machinery in GnRH-expressing neurons, and suggest for the first time that the level of GABA(A) receptor at the cell membrane may be under timely regulation. Overall, they provide a potential mechanism for the circadian regulation of GnRH secretion by GABA, and may also be relevant to the general understanding of circadian rhythms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Individual circadian clocks entrain differently to environmental cycles (zeitgebers, e.g., light and darkness), earlier or later within the day, leading to different chronotypes. In human populations, the distribution of chronotypes forms a bell-shaped curve, with the extreme early and late types _ larks and owls, respectively _ at its ends. Human chronotype, which can be assessed by the timing of an individual's sleep-wake cycle, is partly influenced by genetic factors - known from animal experimentation. Here, we review population genetic studies which have used a questionnaire probing individual daily timing preference for associations with polymorphisms in clock genes. We discuss their inherent limitations and suggest an alternative approach combining a short questionnaire (Munich ChronoType Questionnaire, MCTQ), which assesses chronotype in a quantitative manner, with a genome-wide analysis (GWA). The advantages of these methods in comparison to assessing time-of-day preferences and single nucleotide polymorphism genotyping are discussed. In the future, global studies of chronotype using the MCTQ and GWA may also contribute to understanding the influence of seasons, latitude (e.g., different photoperiods), and climate on allele frequencies and chronotype distribution in different populations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study was conducted to investigate the influence of restricted food access on Solea senegalensis behaviour and daily expression of clock genes in central (diencephalon and optic tectum) and pheripheral (liver) tissues. The Senegalese sole is a marine teleost fish belonging to the Class of Actinopterygii, Order Pleuronectiformes and Family Soleidae. Its geographical distribution in the Mediterranean sea is fairly broad, covering the south and east of the Iberian Peninsula, the North of Africa and Middle East until the coast of Turkey. From a commercial perspective Solea senegalensis has acquired in recent years, a key role in aquacolture industry of the Iberian Peninsula. The Senegalese sole is also acquiring an important relevance in chronobiological studies as the number of published works focused on the sole circadian system has increased in the last few years. The molecular mechanisms underlying sole circadian rhythms has also been explored recently, both in adults and developing sole. Moreover, the consideration of the Pleuronectiformes Order as one of the most evolved teleost groups make the Senegalese sole a species of high interest under a comparative and phylogenetic point of view. All these facts have reinforced the election of Senegalese sole as model species for the present study. The animals were kept under 12L:12D photoperiod conditions and divided into three experimental groups depending on the feeding time: fed at midlight (ML), middark (MD) or random (RND) times. Throughout the experiment, the existence of a daily activity rhythm and it synchronization to the light-dark and feeding cycles was checked. To this end locomotor activity was registred by means of two infrared photocells placed in pvc tube 10 cm below the water surface (upper photocell) and the other one was located 10 cm above the bottom of the tank (bottom photocell). The photocell were connected to a computer so that every time a fish interrupted the infrared light beam, it produced an output signal that was recorded. The number of light beam interruptions was stored every 10 minutes by specialized software for data acquisition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Autoimmune and infectious diseases are associated with behavioral changes referred to as sickness behavior syndrome (SBS). In autoimmunity, the generation of anti-self T lymphocytes and autoantibodies critically involves binding of CD40 ligand on T-cells to its receptor CD40 on B-cells, dendritic cells and macrophages. Activation of CD40 leads to production of proinflammatory cytokines and, as shown here, induces SBS. Here we report that these behavioral changes depend on the expression of tumor necrosis factor alpha receptor 1 (TNFR1), but not on interleukin-1 receptor 1 or interleukin-6. Moreover, the intensity of SBS correlates with suppression of E-box controlled clock genes, including Dbp, and upregulation of Bmal1. However, the absence of TNFR1 does not interfere with the development of SBS and dysregulation of clock genes in mice treated with lipopolysaccharide. Thus, our results suggest that TNFR1 mediates SBS and dysregulation of clock genes in autoimmune diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dormancy is an adaptive mechanism that allows woody plants to survive at low temperatures during the winter. Disruption of circadian clock genes in winter or under low temperatures, both in long days as in short days, were described in our group few years ago (Ramos et al., 2005). Basic mechanisms of the circadian clock function are similar in herbaceous as well as in woody plants although there are differences in their response to low temperatures (Bieniawska et al., 2008). Woody plants growing in daylight conditions should have a specific transcriptional control above the circadian clock genes, which is responsible of their constitutive transcriptional activation observed under low temperatures conditions. In order to understand this regulatory process, we are analyzing the behavior of a circadian clock gene in poplar. To this aim, we have isolated its promoter region and fused to the luciferase reporter gene. This construct has been transformed into Populus tremula x P. alba 717-1B4 INRA clone. Here we present the characterization of these transgenic lines under different conditions of light and temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The period (per) gene in Drosophila melanogaster provides an integral component of biological rhythmicity and encodes a protein that includes a repetitive threonine-glycine (Thr-Gly) tract. Similar repeats are found in the frq and wc2 clock genes of Neurospora crassa and in the mammalian per homologues, but their circadian functions are unknown. In Drosophilids, the length of the Thr-Gly repeat varies widely between species, and sequence comparisons have suggested that the repeat length coevolves with the immediately flanking amino acids. A functional test of the coevolution hypothesis was performed by generating several hybrid per transgenes between Drosophila pseudoobscura and D. melanogaster, whose repetitive regions differ in length by about 150 amino acids. The positions of the chimeric junctions were slightly altered in each transgene. Transformants carrying per constructs in which the repeat of one species was juxtaposed next to the flanking region of the other were almost arrhythmic or showed a striking temperature sensitivity of the circadian period. In contrast, transgenes in which the repeat and flanking regions were conspecific gave wild-type levels of circadian rescue. These results support the coevolutionary interpretation of the interspecific sequence changes in this region of the PER molecule and reveal a functional dimension to this process related to the clock’s temperature compensation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The chicken pineal gland contains the autonomous circadian oscillator together with the photic-input pathway. We searched for chicken pineal genes that are induced by light in a time-of-day-dependent manner, and isolated chicken homolog of bZIP transcription factor E4bp4 (cE4bp4) showing high similarity to vrille, one of the Drosophila clock genes. cE4bp4 was expressed rhythmically in the pineal gland with a peak at very early (subjective) night under both 12-h light/12-h dark cycle and constant dark conditions, and the phase was nearly opposite to the expression rhythm of cPer2, a chicken pineal clock gene. Luciferase reporter gene assays showed that cE4BP4 represses cPer2 promoter through a E4BP4-recognition sequence present in the 5′-flanking region, indicating that cE4BP4 can down-regulate the chick pineal cPer2 expression. In vivo light-perturbation studies showed that the prolongation of the light period to early subjective night maintained the high level expression of the pineal cE4bp4, and presumably as a consequence delayed the onset of the induction of the pineal cPer2 expression in the next morning. These light-dependent changes in the mRNA levels of the pineal cE4bp4 and cPer2 were followed by a phase-delay of the subsequent cycles of cE4bp4/cPer2 expression, suggesting that cE4BP4 plays an important role in the phase-delaying process as a light-dependent suppressor of cPer2 gene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Disruptions to circadian rhythm in mice and humans have been associated with an increased risk of obesity and metabolic syndrome. The gut microbiota is known to be essential for the maintenance of circadian rhythm in the host suggesting a role for microbe-host interactions in the regulation of the peripheral circadian clock. Previous work suggested a role for gut bacterial bile salt hydrolase (BSH) activity in the regulation of host circadian gene expression. Here we demonstrate that unconjugated bile acids, known to be generated through the BSH activity of the gut microbiota, are potentially chronobiological regulators of host circadian gene expression. We utilised a synchronised Caco-2 epithelial colorectal cell model and demonstrated that unconjugated bile acids, but not the equivalent tauro-conjugated bile salts, enhance the expression levels of genes involved in circadian rhythm. In addition oral administration of mice with unconjugated bile acids significantly altered expression levels of circadian clock genes in the ileum and colon as well as the liver with significant changes to expression of hepatic regulators of circadian rhythm (including Dbp) and associated genes (Per2, Per3 and Cry2). The data demonstrate a potential mechanism for microbe-host crosstalk that significantly impacts upon host circadian gene expression. Disruptions to circadian rhythm in mice and humans have been associated with an increased risk of obesity and metabolic syndrome. The gut microbiota is known to be essential for the maintenance of circadian rhythm in the host suggesting a role for microbe-host interactions in the regulation of the peripheral circadian clock. Previous work suggested a role for gut bacterial bile salt hydrolase (BSH) activity in the regulation of host circadian gene expression. Here we demonstrate that unconjugated bile acids, known to be generated through the BSH activity of the gut microbiota, are potentially chronobiological regulators of host circadian gene expression. We utilised a synchronised Caco-2 epithelial colorectal cell model and demonstrated that unconjugated bile acids, but not the equivalent tauro-conjugated bile salts, enhance the expression levels of genes involved in circadian rhythm. In addition oral administration of mice with unconjugated bile acids significantly altered expression levels of circadian clock genes in the ileum and colon as well as the liver with significant changes to expression of hepatic regulators of circadian rhythm (including Dbp) and associated genes (Per2, Per3 and Cry2). The data demonstrate a potential mechanism for microbe-host crosstalk that significantly impacts upon host circadian gene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although it has long been known that genetic factors play a major role in shaping the electroencephalogram (EEG), progress on identifying the underlying genes has, until recently, been limited. Using quantitative trait loci (QTL) analyses several genomic loci affecting the sleep EEG could be mapped in the mouse. For three of these QTLs the responsible genes were identified leading to the implication of novel signaling pathways affecting EEG traits. Moreover, the insight that in the mouse the sleep-wake dependent dynamics in the expression of EEG slow waves during sleep is under strong genetic control has paved the way for candidate gene studies in humans investigating the contribution of specific polymorphism to the trait-like inter-individual differences in the susceptibility to sleep loss. Candidate gene studies in the mouse were also instrumental in establishing an alternative, noncircadian function for clock genes in the homeostatic regulation of sleep and modulating rhythmic EEG activity of thalamocortical origin. Future efforts should combine system genetics approaches in the mouse and genome-wide association studies in humans to facilitate uncovering the molecular pathways that shape brain activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we report on The Satellite Symposium on Sleep Function that was held in Lausanne during 6(th) FENS forum and brought together neuroscientists from basic and clinical sleep research. We illustrate the principal questions that arose during this interdisciplinary gathering and introduce the contents of nine review articles on aspects of sleep that are contained in this Special Issue of the European Journal of Neuroscience.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

STUDY OBJECTIVES: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. DESIGN: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. SETTING: Mouse sleep laboratory. PARTICIPANTS: Male mice. INTERVENTIONS: Sleep deprivation. RESULTS: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. CONCLUSIONS: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. CITATION: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.