991 resultados para CHARACTER THEORY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We set up the theory of newforms of half-integral weight on Gamma(0)(8N) and Gamma(0)(16N), where N is odd and squarefree. Further, we extend the definition of the Kohnen plus space in general for trivial character and also study the theory of newforms in the plus spaces on Gamma(0)(8N), Gamma(0)(16N), where N is odd and squarefree. Finally, we show that the Atkin-Lehner W-operator W-4 acts as the identity operator on S-2k(new)(4N), where N is odd and squarefree. This proves that S-2k(-)(4) = S-2k(4).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using polydispersity index as an additional order parameter we investigate freezing/melting transition of Lennard-Jones polydisperse systems (with Gaussian polydispersity in size), especially to gain insight into the origin of the terminal polydispersity. The average inherent structure (IS) energy and root mean square displacement (RMSD) of the solid before melting both exhibit quite similar polydispersity dependence including a discontinuity at solid-liquid transition point. Lindemann ratio, obtained from RMSD, is found to be dependent on temperature. At a given number density, there exists a value of polydispersity index (delta (P)) above which no crystalline solid is stable. This transition value of polydispersity(termed as transition polydispersity, delta (P) ) is found to depend strongly on temperature, a feature missed in hard sphere model systems. Additionally, for a particular temperature when number density is increased, delta (P) shifts to higher values. This temperature and number density dependent value of delta (P) saturates surprisingly to a value which is found to be nearly the same for all temperatures, known as terminal polydispersity (delta (TP)). This value (delta (TP) similar to 0.11) is in excellent agreement with the experimental value of 0.12, but differs from hard sphere transition where this limiting value is only 0.048. Terminal polydispersity (delta (TP)) thus has a quasiuniversal character. Interestingly, the bifurcation diagram obtained from non-linear integral equation theories of freezing seems to provide an explanation of the existence of unique terminal polydispersity in polydisperse systems. Global bond orientational order parameter is calculated to obtain further insights into mechanism for melting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been well-established that interfaces in crystalline materials are key players in the mechanics of a variety of mesoscopic processes such as solidification, recrystallization, grain boundary migration, and severe plastic deformation. In particular, interfaces with complex morphologies have been observed to play a crucial role in many micromechanical phenomena such as grain boundary migration, stability, and twinning. Interfaces are a unique type of material defect in that they demonstrate a breadth of behavior and characteristics eluding simplified descriptions. Indeed, modeling the complex and diverse behavior of interfaces is still an active area of research, and to the author's knowledge there are as yet no predictive models for the energy and morphology of interfaces with arbitrary character. The aim of this thesis is to develop a novel model for interface energy and morphology that i) provides accurate results (especially regarding "energy cusp" locations) for interfaces with arbitrary character, ii) depends on a small set of material parameters, and iii) is fast enough to incorporate into large scale simulations.

In the first half of the work, a model for planar, immiscible grain boundary is formulated. By building on the assumption that anisotropic grain boundary energetics are dominated by geometry and crystallography, a construction on lattice density functions (referred to as "covariance") is introduced that provides a geometric measure of the order of an interface. Covariance forms the basis for a fully general model of the energy of a planar interface, and it is demonstrated by comparison with a wide selection of molecular dynamics energy data for FCC and BCC tilt and twist boundaries that the model accurately reproduces the energy landscape using only three material parameters. It is observed that the planar constraint on the model is, in some cases, over-restrictive; this motivates an extension of the model.

In the second half of the work, the theory of faceting in interfaces is developed and applied to the planar interface model for grain boundaries. Building on previous work in mathematics and materials science, an algorithm is formulated that returns the minimal possible energy attainable by relaxation and the corresponding relaxed morphology for a given planar energy model. It is shown that the relaxation significantly improves the energy results of the planar covariance model for FCC and BCC tilt and twist boundaries. The ability of the model to accurately predict faceting patterns is demonstrated by comparison to molecular dynamics energy data and experimental morphological observation for asymmetric tilt grain boundaries. It is also demonstrated that by varying the temperature in the planar covariance model, it is possible to reproduce a priori the experimentally observed effects of temperature on facet formation.

Finally, the range and scope of the covariance and relaxation models, having been demonstrated by means of extensive MD and experimental comparison, future applications and implementations of the model are explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An equation for the reflection which results when an expanding dielectric slab scatters normally incident plane electromagnetic waves is derived using the invariant imbedding concept. The equation is solved approximately and the character of the solution is investigated. Also, an equation for the radiation transmitted through such a slab is similarly obtained. An alternative formulation of the slab problem is presented which is applicable to the analogous problem in spherical geometry. The form of an equation for the modal reflections from a nonrelativistically expanding sphere is obtained and some salient features of the solution are described. In all cases the material is assumed to be a nondispersive, nonmagnetic dielectric whose rest frame properties are slowly varying.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bain, William, 'One Order, Two Laws: Recovering the 'Normative' in English School Theory', Review of International Studies, (2007) 33(4) pp.557-575 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scott, Len, and Peter Jackson, 'The Study of Intelligence in Theory and Practice', Intelligence and National Security, (2004) 19(2) pp.139-169 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is much common ground between the areas of coding theory and systems theory. Fitzpatrick has shown that a Göbner basis approach leads to efficient algorithms in the decoding of Reed-Solomon codes and in scalar interpolation and partial realization. This thesis simultaneously generalizes and simplifies that approach and presents applications to discrete-time modeling, multivariable interpolation and list decoding. Gröbner basis theory has come into its own in the context of software and algorithm development. By generalizing the concept of polynomial degree, term orders are provided for multivariable polynomial rings and free modules over polynomial rings. The orders are not, in general, unique and this adds, in no small way, to the power and flexibility of the technique. As well as being generating sets for ideals or modules, Gröbner bases always contain a element which is minimal with respect tot the corresponding term order. Central to this thesis is a general algorithm, valid for any term order, that produces a Gröbner basis for the solution module (or ideal) of elements satisfying a sequence of generalized congruences. These congruences, based on shifts and homomorphisms, are applicable to a wide variety of problems, including key equations and interpolations. At the core of the algorithm is an incremental step. Iterating this step lends a recursive/iterative character to the algorithm. As a consequence, not all of the input to the algorithm need be available from the start and different "paths" can be taken to reach the final solution. The existence of a suitable chain of modules satisfying the criteria of the incremental step is a prerequisite for applying the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hannah Arendt's theory of political judgment has been an ongoing perplexity among scholars who have written on her. As a result, her theory of judgment is often treated as a suggestive but unfinished aspect of her thought. Drawing on a wider array of sources than is commonly utilized, I argue that her theory of political judgment was in fact the heart of her work. Arendt's project, in other words, centered around reestablishing the possibility of political judgment in a modern world that historically has progressively undermined it. In the dissertation, I systematically develop an account of Arendt's fundamentally political and non-sovereign notion of judgment. We discover that individual judgment is not arbitrary, and that even in the complex circumstances of the modern world there are valid structures of judgment which can be developed and dependably relied upon. The result of this work articulates a theory of practical reason which is highly compelling: it provides orientation for human agency which does not rob it of its free and spontaneous character; shows how we can improve and cultivate our political judgment; and points the way toward the profoundly intersubjective form of political philosophy Arendt ultimately hoped to develop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional theory has been used to investigate the surface relaxation of Cu2O(100) and the adsorption of NO. The calculations indicate the formation of surface copper dimers on relaxation coupled with a large contraction of the spacing between the first and second layers. Local density of states for atoms in the top three layers shows that the third layer copper atoms have the greatest change in bonding character. Adsorption energies have been calculated for the N-down and O-down adsorption of NO on the Cu2O(100) surface. These indicate that N-down adsorption is favoured and that in this case NO-lattice oxygen interactions dominate the adsorbate structure. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose ofthis study was to investigate the emotion assumptions underlying just-world theory. This theory proposes that people have a need to believe in a just world - a world where people get what they deserve. The first emotion assumption is that people, therefore, find injustices (Le., undeserved outcomes) threatening and thus emotionally arousing. Second, it is this arousal that is assumed to drive subsequent strategies for maintaining the belief in a just world. One strategy an individual may use to maintain this belief is derogating victims of injustice, or seeing their character in a more negative light. To test these two assumptions, 102 participants viewed a video depicting either a victim who presumably presented a high threat to people's belief in ajust world (she was innocent and, therefore, undeserving of her fate) or low threat (she was not innocent and, therefore, more deserving of her fate) while their heart rate and EDA was measured. Half of the participants were then given the opportunity to help the victim whereas the other half were not given this opportunity. The manipulations were followed by both explicit and indirect measures of evaluations ofthe victim as well as self-report measures of affect experienced while watching the victim video, and an individual difference scale assessing the strength of participants' just-world beliefs (as well as other measures that were part ofa larger study). Results indicated that participants did report feeling more threatened by the innocent victim. Although there was some evidence of victim derogation on the implicit measure of victim evaluation, there was no evidence that emotional arousal drove the negative evaluations of the victim who could not be helped. Some interaction effects with individual differences in just-world beliefs did occur, but these were not entirely consistent with the rationale behind the individual difference scales. These results provide only weak support for the first emotion assumption ofjust-world theory. Implications of these findings as well as limitations of the study and future directions concerning just-world theory are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electronic theory is developed, which describes the ultrafast demagnetization in itinerant ferromagnets following the absorption of a femtosecond laser pulse. The present work intends to elucidate the microscopic physics of this ultrafast phenomenon by identifying its fundamental mechanisms. In particular, it aims to reveal the nature of the involved spin excitations and angular-momentum transfer between spin and lattice, which are still subjects of intensive debate. In the first preliminary part of the thesis the initial stage of the laser-induced demagnetization process is considered. In this stage the electronic system is highly excited by spin-conserving elementary excitations involved in the laser-pulse absorption, while the spin or magnon degrees of freedom remain very weakly excited. The role of electron-hole excitations on the stability of the magnetic order of one- and two-dimensional 3d transition metals (TMs) is investigated by using ab initio density-functional theory. The results show that the local magnetic moments are remarkably stable even at very high levels of local energy density and, therefore, indicate that these moments preserve their identity throughout the entire demagnetization process. In the second main part of the thesis a many-body theory is proposed, which takes into account these local magnetic moments and the local character of the involved spin excitations such as spin fluctuations from the very beginning. In this approach the relevant valence 3d and 4p electrons are described in terms of a multiband model Hamiltonian which includes Coulomb interactions, interatomic hybridizations, spin-orbit interactions, as well as the coupling to the time-dependent laser field on the same footing. An exact numerical time evolution is performed for small ferromagnetic TM clusters. The dynamical simulations show that after ultra-short laser pulse absorption the magnetization of these clusters decreases on a time scale of hundred femtoseconds. In particular, the results reproduce the experimentally observed laser-induced demagnetization in ferromagnets and demonstrate that this effect can be explained in terms of the following purely electronic non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser excitation the spin-orbit coupling yields local angular-momentum transfer between the spins and the electron orbits, while subsequently the orbital angular momentum is very rapidly quenched in the lattice on the time scale of one femtosecond due to interatomic electron hoppings. In combination, these two processes result in a demagnetization within hundred or a few hundred femtoseconds after laser-pulse absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os-3(CO)(10)(s-cis-L)] (L= cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os-3(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient la, a second CO bridge is formed in 20 ps in the photoproduct [Os-3(CO)(8)(mu-CO)(2)- (cyclohexa-1,3-diene)] (1b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of bimetallic ruthenium complexes [{Ru(dppe)Cp*}2(μ-C≡CArC≡C)] featuring diethynylaromatic bridging ligands (Ar = 1,4-phenylene, 1,4-naphthylene, 9,10-anthrylene) have been prepared and some representative molecular structures determined. A combination of UV–vis–NIR and IR spectroelectrochemical methods and density functional theory (DFT) have been used to demonstrate that one-electron oxidation of compounds [{Ru(dppe)Cp*}2(μ-C≡CArC≡C)](HC≡CArC≡CH = 1,4-diethynylbenzene; 1,4-diethynyl-2,5-dimethoxybenzene; 1,4-diethynylnaphthalene; 9,10-diethynylanthracene) yields solutions containing radical cations that exhibit characteristics of both oxidation of the diethynylaromatic portion of the bridge, and a mixed-valence state. The simultaneous population of bridge-oxidized and mixed-valence states is likely related to a number of factors, including orientation of the plane of the aromatic portion of the bridging ligand with respect to the metal d-orbitals of appropriate π-symmetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary developmental genetics brings together systematists, morphologists and developmental geneticists; it will therefore impact on each of these component disciplines. The goals and methods of phylogenetic analysis are reviewed here, and the contribution of evolutionary developmental genetics to morphological systematics, in terms of character conceptualisation and primary homology assessment, is discussed. Evolutionary developmental genetics, like its component disciplines phylogenetic systematics and comparative morphology, is concerned with homology concepts. Phylogenetic concepts of homology and their limitations are considered here, and the need for independent homology statements at different levels of biological organisation is evaluated. The role of systematics in evolutionary developmental genetics is outlined. Phylogenetic systematics and comparative morphology will suggest effective sampling strategies to developmental geneticists. Phylogenetic systematics provides hypotheses of character evolution (including parallel evolution and convergence), stimulating investigations into the evolutionary gains and losses of morphologies. Comparative morphology identifies those structures that are not easily amenable to typological categorisation, and that may be of particular interest in terms of developmental genetics. The concepts of latent homology and genetic recall may also prove useful in the evolutionary interpretation of developmental genetic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(η4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(η4-C14H10)}] (K2), [Cp*Fe(η4-C10H8)] (1), and [Cp*Fe(η4-C14H10)] (2) were synthesized and characterized by NMR, UV−vis, and 57Fe Mössbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η4-C10H8)]− (1−) and [Cp*Fe(η4-C14H10)]− (2−) and reversibly oxidized to the cations [Cp*Fe(η6-C10H8)]+ (1+) and [Cp*Fe(η6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1−/0/+ and the anthracene derivatives 2−/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1− and 2− are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L•−. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.