999 resultados para CATACLYSMIC VARIABLES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references and indexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a long-term study of the secondary star in the cataclysmic variable AE Aqr, using Roche tomography to indirectly image starspots on the stellar surface spanning 8 years of observations. The seven maps show an abundance of spot features at both high and low latitudes. We find that all maps have at least one large high-latitude spot region, and we discuss its complex evolution between maps, as well as its compatibility with current dynamo theories. Furthermore, we see the apparent growth in fractional spot coverage, fs, around 45° latitude over the duration of observations, with a persistently high fs near latitudes of 20°. These bands of spots may form as part of a magnetic activity cycle, with magnetic flux tubes emerging at different latitudes, similar to the `butterfly' diagram for the Sun. We discuss the nature of flux tube emergence in close binaries, as well as the activity of AE Aqr in the context of other stars.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present high-speed, three-colour photometry of the eclipsing cataclysmic variable SDSS J150722.30+523039.8 (hereafter SDSS J1507). This system has an orbital period of 66.61 min, placing it below the observed `period minimum' for cataclysmic variables. We determine the system parameters via a parametrized model of the eclipse fitted to the observed lightcurve by ?2 minimization. We obtain a mass ratio of q = 0.0623 +/- 0.0007 and an orbital inclination . The primary mass is Mw = 0.90 +/- 0.01Msolar. The secondary mass and radius are found to be Mr = 0.056 +/- 0.001Msolar and Rr = 0.096 +/- 0.001Rsolar, respectively. We find a distance to the system of 160 +/- 10pc. The secondary star in SDSS J1507 has a mass substantially below the hydrogen burning limit, making it the second confirmed substellar donor in a cataclysmic variable. The very short orbital period of SDSS J1507 is readily explained if the secondary star is nuclearly evolved, or if SDSS J1507 formed directly from a detached white dwarf/brown dwarf binary. Given the lack of any visible contribution from the secondary star, the very low secondary mass and the low HeI ?6678/Ha emission-line ratio, we argue that SDSS J1507 probably formed directly from a detached white dwarf/brown dwarf binary. If confirmed, SDSS J1507 will be the first such system identified. The implications for binary star evolution, the brown dwarf desert and the common envelope phase are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The UV spectra of nova-like variables are dominated by emission from the accretion disk, modified by scattering in a wind emanating from the disk. Here, we model the spectra of RW Tri and UX UMa, the only two eclipsing nova-like variables which have been observed with the Hubble Space Telescope in the far-ultraviolet, in an attempt to constrain the geometry and the ionization structure of their winds. Using our Monte Carlo radiative transfer code, we computed spectra for simply parameterized axisymmetric biconical outflow models and were able to find plausible models for both systems. These reproduce the primary UV resonance lines-N v, Si iv, and C iv-in the observed spectra in and out of eclipse. The distribution of these ions in the wind models is similar in both cases as is the extent of the primary scattering regions in which these lines are formed. The inferred mass-loss rates are 6%-8% of the mass accretion rates for the systems. We discuss the implication of our point models for our understanding of accretion disk winds in cataclysmic variables. © 2010. The American Astronomical Society. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle. Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity. Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T greater than or similar to 10(5). However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability. This flow is similar to plane Couette flow including the Coriolis force, at least locally. What drives their turbulence and then transport, when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 less than or similar to nu(t) less than or similar to 0.1, which can explain transport in accretion flows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The secondary stars in cataclysmic variables (CVs) are key to our understanding of the origin, evolution and behaviour of this class of interacting binary. In seeking a fuller understanding of these objects, the challenge for observers is to obtain images of the secondary star. This goal can be achieved through Roche tomography, an indirect imaging technique that can be used to map the Roche-lobe-filling secondary. The review begins with a description of the basic principles that underpin Roche tomography, including methods for determining the system parameters. Finally, we conclude with a look at the main scientific highlights to date, including the first unambiguous detection of starspots on AE Aqr B, and consider the future prospects of this technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on new simultaneous phase-resolved spectroscopic and polarimetric observations of the polar (AM Herculis star) V834 Cen during a high state of accretion. Strong emission lines and high levels of variable circular and linear polarization are observed over the orbital period. The polarization data are modelled using the Stokes imaging technique of Potter et al. The spectroscopic emission lines are investigated using the Doppler tomography technique of Marsh and Horne and the Roche tomography technique of Dhillon and Watson. Up to now, all three techniques have been used separately to investigate the geometry and accretion dynamics in cataclysmic variables. For the first time, we apply all three techniques to simultaneous data for a single system. This allows us to compare and test each of the techniques against each other and hence to derive a better understanding of the geometry, dynamics and system parameters of V834 Cen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present time-resolved J-band spectroscopy of the short-period cataclysmic variable SDSS J143317.78+101123.3. We detect absorption lines from the sub-stellar donor star in this system, which contributes 38 +/- 5 per cent to the J-band light. From the relative strengths of the absorption lines in the J band, we estimate the spectral type of the donor star to be L2 +/- 1. These data are the first spectroscopic detection of a donor with a confirmed sub-stellar mass in a cataclysmic variable, and the spectral type is consistent with that expected from semi-empirical evolutionary models.

Using skew mapping, we have been able to derive an estimate for the radial velocity of the donor of K-d = 520 +/- 60 km/s. This value is consistent with, though much less precise than, predictions from mass determinations found via photometric fitting of the eclipse light curves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The secondary stars in cataclysmic variables (CVs) are key to our understanding of the origin evolution and behaviour of this class of interacting binary. In seeking a fuller understanding of these objects the challenge for observers is to obtain images of the secondary star. This goal can be achieved through Roche tomography an indirect imaging technique that can be used to map the Roche-lobe-filling secondary star. The review begins with a description of the basic principles that underpin Roche tomography including methods for determining the binary system parameters. Noise propagation onto Roche tomograms is also covered. Finally the review concludes with a look at the main scientific highlights to date and the future prospects for Roche tomography

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present observations of the unusual optical transient SN 2010U, including spectra taken 1.03 days to 15.3 days after maximum light that identify it as a fast and luminous Fe II type nova. Our multi-band light curve traces the fast decline (t 2 = 3.5 ± 0.3 days) from maximum light (MV = -10.2 ± 0.1 mag), placing SN 2010U in the top 0.5% of the most luminous novae ever observed. We find typical ejecta velocities of ≈1100 km s-1 and that SN 2010U shares many spectral and photometric characteristics with two other fast and luminous Fe II type novae, including Nova LMC 1991 and M31N-2007-11d. For the extreme luminosity of this nova, the maximum magnitude versus rate of decline relationship indicates a massive white dwarf (WD) progenitor with a low pre-outburst accretion rate. However, this prediction is in conflict with emerging theories of nova populations, which predict that luminous novae from massive WDs should preferentially exhibit an alternate spectral type (He/N) near maximum light.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the discovery and characterization of a deeply eclipsing AM CVn-system, Gaia14aae (=ASSASN-14cn). Gaia14aae was identified independently by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al.) and by the Gaia Science Alerts project, during two separate outbursts. A third outburst is seen in archival Pan-STARRS-1 (PS1; Schlafly et al.; Tonry et al.; Magnier et al.) and ASAS-SN data. Spectroscopy reveals a hot, hydrogen-deficient spectrum with clear double-peaked emission lines, consistent with an accreting double-degenerate classification. We use follow-up photometry to constrain the orbital parameters of the system. We find an orbital period of 49.71 min, which places Gaia14aae at the long period extremum of the outbursting AM CVn period distribution. Gaia14aae is dominated by the light from its accreting white dwarf (WD). Assuming an orbital inclination of 90° for the binary system, the contact phases of the WD lead to lower limits of 0.78 and 0.015 M⊙ on the masses of the accretor and donor, respectively, and a lower limit on the mass ratio of 0.019. Gaia14aae is only the third eclipsing AM CVn star known, and the first in which the WD is totally eclipsed. Using a helium WD model, we estimate the accretor's effective temperature to be 12 900 ± 200 K. The three outburst events occurred within four months of each other, while no other outburst activity is seen in the previous 8 yr of Catalina Real-time Transient Survey (CRTS; Drake et al.), Pan-STARRS-1 and ASAS-SN data. This suggests that these events might be rebrightenings of the first outburst rather than individual events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multiline effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach are demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally, we discuss some of the current limitations of our method, some possible extensions and potential future applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Study on variable stars is an important topic of modern astrophysics. After the invention of powerful telescopes and high resolving powered CCD’s, the variable star data is accumulating in the order of peta-bytes. The huge amount of data need lot of automated methods as well as human experts. This thesis is devoted to the data analysis on variable star’s astronomical time series data and hence belong to the inter-disciplinary topic, Astrostatistics. For an observer on earth, stars that have a change in apparent brightness over time are called variable stars. The variation in brightness may be regular (periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and are caused by various reasons. In some cases, the variation is due to some internal thermo-nuclear processes, which are generally known as intrinsic vari- ables and in some other cases, it is due to some external processes, like eclipse or rotation, which are known as extrinsic variables. Intrinsic variables can be further grouped into pulsating variables, eruptive variables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and chromospheri- cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely occurs and are not periodic phenomena. Most of the other variations are periodic in nature. Variable stars can be observed through many ways such as photometry, spectrophotometry and spectroscopy. The sequence of photometric observa- xiv tions on variable stars produces time series data, which contains time, magni- tude and error. The plot between variable star’s apparent magnitude and time are known as light curve. If the time series data is folded on a period, the plot between apparent magnitude and phase is known as phased light curve. The unique shape of phased light curve is a characteristic of each type of variable star. One way to identify the type of variable star and to classify them is by visually looking at the phased light curve by an expert. For last several years, automated algorithms are used to classify a group of variable stars, with the help of computers. Research on variable stars can be divided into different stages like observa- tion, data reduction, data analysis, modeling and classification. The modeling on variable stars helps to determine the short-term and long-term behaviour and to construct theoretical models (for eg:- Wilson-Devinney model for eclips- ing binaries) and to derive stellar properties like mass, radius, luminosity, tem- perature, internal and external structure, chemical composition and evolution. The classification requires the determination of the basic parameters like pe- riod, amplitude and phase and also some other derived parameters. Out of these, period is the most important parameter since the wrong periods can lead to sparse light curves and misleading information. Time series analysis is a method of applying mathematical and statistical tests to data, to quantify the variation, understand the nature of time-varying phenomena, to gain physical understanding of the system and to predict future behavior of the system. Astronomical time series usually suffer from unevenly spaced time instants, varying error conditions and possibility of big gaps. This is due to daily varying daylight and the weather conditions for ground based observations and observations from space may suffer from the impact of cosmic ray particles. Many large scale astronomical surveys such as MACHO, OGLE, EROS, xv ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke- pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even though their primary intention is not variable star observation. Center for Astrostatistics, Pennsylvania State University is established to help the astro- nomical community with the aid of statistical tools for harvesting and analysing archival data. Most of these surveys releases the data to the public for further analysis. There exist many period search algorithms through astronomical time se- ries analysis, which can be classified into parametric (assume some underlying distribution for data) and non-parametric (do not assume any statistical model like Gaussian etc.,) methods. Many of the parametric methods are based on variations of discrete Fourier transforms like Generalised Lomb-Scargle peri- odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi- sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994) etc. Even though most of the methods can be brought under automation, any of the method stated above could not fully recover the true periods. The wrong detection of period can be due to several reasons such as power leakage to other frequencies which is due to finite total interval, finite sampling interval and finite amount of data. Another problem is aliasing, which is due to the influence of regular sampling. Also spurious periods appear due to long gaps and power flow to harmonic frequencies is an inherent problem of Fourier methods. Hence obtaining the exact period of variable star from it’s time series data is still a difficult problem, in case of huge databases, when subjected to automation. As Matthew Templeton, AAVSO, states “Variable star data analysis is not always straightforward; large-scale, automated analysis design is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of xvi huge amount of data in these databases is quite challenging, even when looking at seemingly small issues such as period determination and classification”. It will be beneficial for the variable star astronomical community, if basic parameters, such as period, amplitude and phase are obtained more accurately, when huge time series databases are subjected to automation. In the present thesis work, the theories of four popular period search methods are studied, the strength and weakness of these methods are evaluated by applying it on two survey databases and finally a modified form of cubic spline method is intro- duced to confirm the exact period of variable star. For the classification of new variable stars discovered and entering them in the “General Catalogue of Vari- able Stars” or other databases like “Variable Star Index“, the characteristics of the variability has to be quantified in term of variable star parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We extend recent work that included the effect of pressure forces to derive the precession rate of eccentric accretion discs in cataclysmic variables to the case of double degenerate systems. We find that the logical scaling of the pressure force in such systems results in predictions of unrealistically high primary masses. Using the prototype AM CVn as a calibrator for the magnitude of the effect, we find that there is no scaling that applies consistently to all the systems in the class. We discuss the reasons for the lack of a superhump period to mass ratio relationship analogous to that known for SU UMa systems and suggest that this is because these secondaries do not have a single valued mass-radius relationship. We highlight the unreliability of mass-ratios derived by applying the SU UMa expression to the AM CVn binaries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present fast (72 ms) spectroscopy of AM Her obtained at an intermediate brightness state just before a rise to high state. Interesting features in the line behaviour of AM Her are noted and the variability spectrum is presented and compared to that of SS Cyg.