990 resultados para CAPACITANCE-VOLTAGE CHARACTERISTICS
Resumo:
This thesis is devoted to understanding and improving technologically important III-V compound semiconductor (e.g. GaAs, InAs, and InSb) surfaces and interfaces for devices. The surfaces and interfaces of crystalline III-V materials have a crucial role in the operation of field-effect-transistors (FET) and highefficiency solar-cells, for instance. However, the surfaces are also the most defective part of the semiconductor material and it is essential to decrease the amount of harmful surface or interface defects for the next-generation III-V semiconductor device applications. Any improvement in the crystal ordering at the semiconductor surface reduces the amount of defects and increases the material homogeneity. This is becoming more and more important when the semiconductor device structures decrease to atomic-scale dimensions. Toward that target, the effects of different adsorbates (i.e., Sn, In, and O) on the III-V surface structures and properties have been investigated in this work. Furthermore, novel thin-films have been synthesized, which show beneficial properties regarding the passivation of the reactive III-V surfaces. The work comprises ultra-high-vacuum (UHV) environment for the controlled fabrication of atomically ordered III-V(100) surfaces. The surface sensitive experimental methods [low energy electron diffraction (LEED), scanning tunneling microscopy/spectroscopy (STM/STS), and synchrotron radiation photoelectron spectroscopy (SRPES)] and computational density-functionaltheory (DFT) calculations are utilized for elucidating the atomic and electronic properties of the crucial III-V surfaces. The basic research results are also transferred to actual device tests by fabricating metal-oxide-semiconductor capacitors and utilizing the interface sensitive measurement techniques [capacitance voltage (CV) profiling, and photoluminescence (PL) spectroscopy] for the characterization. This part of the thesis includes the instrumentation of home-made UHV-compatible atomic-layer-deposition (ALD) reactor for growing good quality insulator layers. The results of this thesis elucidate the atomic structures of technologically promising Sn- and In-stabilized III-V compound semiconductor surfaces. It is shown that the Sn adsorbate induces an atomic structure with (1×2)/(1×4) surface symmetry which is characterized by Sn-group III dimers. Furthermore, the stability of peculiar ζa structure is demonstrated for the GaAs(100)-In surface. The beneficial effects of these surface structures regarding the crucial III-V oxide interface are demonstrated. Namely, it is found that it is possible to passivate the III-V surface by a careful atomic-scale engineering of the III-V surface prior to the gate-dielectric deposition. The thin (1×2)/(1×4)-Sn layer is found to catalyze the removal of harmful amorphous III-V oxides. Also, novel crystalline III-V-oxide structures are synthesized and it is shown that these structures improve the device characteristics. The finding of crystalline oxide structures is exploited by solving the atomic structure of InSb(100)(1×2) and elucidating the electronic structure of oxidized InSb(100) for the first time.
Resumo:
AC thin film electroluminescent devices of MIS and MISIM have been fabricated with a novel dielectric layer of Eu2O3 as an insulator. The threshold voltage for light emission is found to depend strongly on the frequency of excitation source in these devices. These devices are fabricated with an active layer of ZnS:Mn and a novel dielectric layer of Eu2O3 as an insulator. The observed frequency dependence of brightness-voltage characteristics has been explained on the basis of the loss characteristic of the insulator layer. Changes in the threshold voltage and brightness with variation in emitting or insulating film thickness have been investigated in metal-insulator-semiconductor (MIS) structures. It has been found that the decrease in brightness occurring with decreasing ZnS layer thickness can be compensated by an increase in brightness obtained by reducing the insulator thickness. The optimal condition for low threshold voltage and higher stability has been shown to occur when the active layer to insulator thickness ratio lies between one and two.
Resumo:
Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investigated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function and correlation properties of injected electrons. The analytical results have been obtained for a wide range of biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be less than in equilibrium.
Resumo:
Persistent photoconductivity (PPC) in vanadyl phthalocyanine (VOPc) organic light-emitting diodes was investigated using photoconductive time response, photocurrent-voltage characteristics and charge extraction in linearly increasing voltage (CELIV) measurements. The experiments were performed in phase 1 (amorphous) and in phase 2 (crystalline) samples obtained by the physical vapour deposition (PVD) technique over ITO/glass electrodes with an Al covering electrode. The results indicated a photoconductivity with a long decay time in phase 1 VOPc described by a stretched exponential relaxation. The device showed a rectifying behaviour and the mobility of holes was measured by CELIV, following a dispersive model. In crystalline samples the PPC effect was not observed and the dominant mechanism of transport of holes was hopping in a Gaussian density of states.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BaBi2Ta2O9 thin films having a layered structure were fabricated by metalorganic solution deposition technique. The films exhibited good structural, dielectric, and insulating properties. The room temperature resistivity was found to be in the range of 10(12)-10(14) Omega cm up to 4 V corresponding to a field of 200 kV/cm across the capacitor for films annealed in the temperature range of 500-700 degrees C. The current-voltage (I-V) characteristics as a function of thickness for films annealed at 700 degrees C for 1 h, indicated bulk limited conduction and the log(I) vs V-1/2 characteristics suggested a space-charge-limited conduction mechanism. The capacitance-voltage measurements on films in a metal-insulator-semiconductor configuration indicated good Si/BaBi2Ta2O9 interface characteristics and a SiO2 thickness of similar to 5 nm was measured and calculated. (C) 1999 American Institute of Physics. [S0003-6951(99)00830-X].
High Curie point CaBi2Nb2O9 thin films: A potential candidate for lead-free thin-film piezoelectrics
Resumo:
CaBi2Nb2O9 (CBNO) thin films deposited on platinum coated silicon substrates by the polymeric precursor method exhibited good structural, dielectric, and piezoelectric characteristics. Capacitance-voltage measurements indicated good ferroelectric polarization switching characteristics. Remanent polarization and drive voltage values were 4.2 mu C/cm(2) and 1.7 V for a maximum applied voltage of 10 V. The film has a piezoelectric coefficient d(33) equal to 60 pm/V, current density of 0.7 mu A/cm(2), and Curie temperature of 940 degrees C. The polar-axis-oriented CBNO is a promising candidate for use in lead-free high Curie point in ferroelectric and piezoelectric devices. (c) 2006 American Institute of Physics.
Resumo:
We report the successful deposition of CaBi2Nb2O9 (CBN) thin films on platinum coated silicon substrates by polymeric precursor method. The CBN thin films exhibited good structural, dielectric and CBN/Pt interface characteristics. The leakage current of the capacitor structure was around 0.15 A cm(-2) at an applied electric field of 30 kV cm(-1). The capacitance-voltage measurements indicated good ferroelectric polarization switching characteristics. The typical measured small signal dielectric constant and the dissipation factor at a frequency of 100 kHz were 90 and 0.053, respectively. The remanent polarization and the drive voltage values were 4.2 C cm(-2) and 1.7 V at an applied voltage of 10 V. No significant fatigue was observed at least up to 10(8) switching cycles. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline SrTiO3 thin films having a cubic perovskite structure were prepared at different temperatures by the polymeric precursor method on platinum-coated silicon substrate. Crystalline films with uniform composition and thickness were prepared by spin-coating and the post-deposition heat treatment was carried out at different temperatures. The film showed good structural, dielectric, and insulating properties, Scanning electron microscopy (SEM) micrographs showed no occurrence of interdiffusion between the bottom electrode (platinum) and the film during post-annealing, indicating a stable interface between the SrTiO3 and the bottom electrode. The dielectric constant and dissipation factor at a frequency of 100 kHz were 250 and 0.01, respectively, for a 360 nm thick film annealed at 600 degreesC. The capacitance versus applied voltage characteristics showed that the capacitance was almost independent of the applied voltage. The I-V characteristics were ohmic in low fields and a Schottky emission and/or Poole-Frenkel emission were postulated in high fields. Room temperature leakage current density was found to be in the order of 10(-7) A/cm(2) for a 360 nm thick film in an applied electric field of about 100 kV/cm. The charge storage density of 36 fC/mum(2) was obtained in an applied electric field of about 100 kV/cm. (C) 2001 Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
In the present paper, we discuss a generalized theory of electrical characteristics for amorphous semiconductor (or insulator) Schottky barriers, considering: (i) surface states, (ii) doping impurity states at a single energy level and (iii) energetically distributed bulk impurity states. We also consider a thin oxide layer (≈10 Å) between metal and semiconductor. We develop current versus applied potential characteristics considering the variation of the Fermi level very close to contact inside the semiconductor and decrease in barrier height due to the image force effect as well as potential fall on the oxide layer. Finally, we discuss the importance of each parameter, i.e. surface states, distributed impurity states, doping impurity states, thickness of oxide layer etc. on the log I versus applied potential characteristics. The present theory is also applicable for intimate contact, i.e. metal-semiconductor contact, crystalline material structures or for Schottky barriers in insulators or polymers.
Resumo:
This work presents a new high power factor three-phase rectifier based on a Y-connected differential autotransformer with reduced kVA and 18-pulse input current followed by three DC-DC boost converters. The topology provides a regulated output voltage and natural three-phase input power factor correction. The lowest input current harmonic components are the 17th and the 19th. Three boost converters, with constant input currents and regulated parallel connected output voltages are used to process 4kW each one. Analytical results from Fourier analyses of winding currents and the vector diagram of winding voltages are presented. Simulation results to verify the proposed concept and experimental results are shown in the paper.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Neste trabalho, fizemos uma investigação sobre o estudo teórico das características I x V e C x V de Nanotubo Carbono de Parede Simples (NCPS) puro, com Nitrogênio substitucional carregado com cargas -1 (caracterizando um indicativo de dopagem tipo n) e +1 (caracterizando um indicativo de dopagem tipo p) e na presença de grupos doador (NO2)-aceitador (NH2), através da simulação computacional do estado fundamental de NCPS, bem como de sua estrutura eletrônica e propriedades ópticas, utilizando parametrizações semi-empíricas AM1 (Austin Mudel 1) e ZINDO/S-ClS (Zerner´s lntermediate Neglect of Differential Orbital/Spectroscopic - Cunfiguration lnteraction Single) derivadas da Teoria de Hartree-Fock baseada em técnicas de química quântica. Por meio deste modelo teórico analisamos as propriedades ópticas e eletrônicas, de maior interesse para esses materiais, a fim de se entender a melhor forma de interação desses materiais na fabricação de dispositivos eletrônicos, tais como TECs (Transistores de Efeito de Campo) ou em aplicações em optoeletrônica tais como DEL (Dispositivo Emissor de Luz). Observamos que NCPS com Nitrogênio substitucional apresentam defeitos conformacionais do tipo polarônico. Fizemos as curvas dos espectros UV-visível de Absorção para NCPS armchair e zigzag puro, com Nitrogênio substitucional carregado com cargas (-1 e +1) e na presença de grupos doador (NO2)-aceitador (NH2), quando perturbados por intensidades diferentes de campo elétrico. Verificamos que em NCPS zigzag ao aumentarmos a intensidade do campo elétrico, suas curvas sofrem grandes perturbações. Obtivemos as curvas p x E, I x V e C x V para esses NCPS, concluímos que NCPS armchair possui comportamento resistor, pois suas curvas são lineares e zigzag possui comportamento semelhante ao dos dispositivos eletrônicos importantes para o avanço tecnológico. Assim, nossos resultados estão de bom acordo com os resultados experimentais e teóricos de NCPS puro e com Nitrogênio encontrados na literatura.
Resumo:
AlGaN/GaN high electron mobility transistors (HEMT) are key devices for the next generation of high-power, high-frequency and high-temperature electronics applications. Although significant progress has been recently achieved [1], stability and reliability are still some of the main issues under investigation, particularly at high temperatures [2-3]. Taking into account that the gate contact metallization is one of the weakest points in AlGaN/GaN HEMTs, the reliability of Ni, Mo, Pt and refractory metal gates is crucial [4-6]. This work has been focused on the thermal stress and reliability assessment of AlGaN/GaN HEMTs. After an unbiased storage at 350 o C for 2000 hours, devices with Ni/Au gates exhibited detrimental IDS-VDS degradation in pulsed mode. In contrast, devices with Mo/Au gates showed no degradation after similar storage conditions. Further capacitance-voltage characterization as a function of temperature and frequency revealed two distinct trap-related effects in both kinds of devices. At low frequency (< 1MHz), increased capacitance near the threshold voltage was present at high temperatures and more pronounced for the Ni/Au gate HEMT and as the frequency is lower. Such an anomalous “bump” has been previously related to H-related surface polar charges [7]. This anomalous behavior in the C-V characteristics was also observed in Mo/Au gate HEMTs after 1000 h at a calculated channel temperatures of around from 250 o C (T2) up to 320 ºC (T4), under a DC bias (VDS= 25 V, IDS= 420 mA/mm) (DC-life test). The devices showed a higher “bump” as the channel temperature is higher (Fig. 1). At 1 MHz, the higher C-V curve slope of the Ni/Au gated HEMTs indicated higher trap density than Mo/Au metallization (Fig. 2). These results highlight that temperature is an acceleration factor in the device degradation, in good agreement with [3]. Interface state density analysis is being performed in order to estimate the trap density and activation energy.