1000 resultados para C-MYB
Resumo:
Although MYB overexpression in colorectal cancer (CRC) is known to be a prognostic indicator for poor survival, the basis for this overexpression is unclear. Among multiple levels of MYB regulation, the most dynamic is the control of transcriptional elongation by sequences within intron I. The authors have proposed that this regulatory sequence is transcribed into an RNA stem-loop and 19-residue polyuridine tract, and is subject to mutation in CRC. When this region was examined in colorectal and breast carcinoma cell lines and tissues, the authors found frequent mutations only in CRC. It was determined that these mutations allowed increased transcription compared with the wild type sequence. These data suggest that this MYB regulatory region within intron I is subject to mutations in CRC but not breast cancer, perhaps consistent with the mutagenic insult that occurs within the colon and not mammary tissue. In CRC, these mutations may contribute to MYB overexpression, highlighting the importance of noncoding sequences in the regulation of key cancer genes. (c) 2006 Wiley-Liss, Inc.
Resumo:
As previously shown, higher levels of NOTCH1 and increased NF-kappa B signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow ( BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells ( CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency ( than expected by chance) of NF-kappa B-binding sites (BS), including potentially novel NF-kappa B targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappa B, and other important TFs on more primitive HSC sets.
Resumo:
The testing of a 30-mer dG-rich phosphorothioate oligodeoxynucleotide (LG4PS) for effects on the behaviour of vascular smooth muscle cells (VSMC) in vitro and in vivo is described. LG4PS at 0.3 mu M inhibited significantly the phenotype modulation of freshly isolated rabbit VSMC, and cell outgrowth from pig aortic explants was inhibited similar to 80% by 5 mu M LG4PS. The growth of proliferating rabbit and pig VSMC was inhibited similar to 70% by 0.3 mu M and 5 mu M LG4PS, respectively. Though less marked, the antiproliferative effects of LG4PS on human VSMC were comparable to those obtained with heparin. The cytotoxic effects of LG4PS on VSMC in vitro were low. Despite these promising results, adventitial application of 2-200 nmol LG4PS in pluronic gel failed to reduce vascular hyperplasia in balloon-injured rabbit carotid arteries, and the highest dose caused extensive mortality. (C) 1997 Academic Press Limited.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Wilms' tumor 1 gene (WT1) encodes a zinc-finger transcription factor and is expressed in urogenital, hematopoietic and other tissues. It is expressed in a temporal and spatial manner in both embryonic and adult stages. To obtain a better understanding of the biological function of WT1, we studied two aspects of WT1 regulation: one is the identification of tissue-specific cis-regulatory elements that regulate its expression, the other is the downstream genes which are modulated by WT1.^ My studies indicate that in addition to the promoter, other regulatory elements are required for the tissue specific expression of this gene. A 259-bp hematopoietic specific enhancer in intron 3 of the WT1 gene increased the transcriptional activity of the WT1 promoter by 8- to 10-fold in K562 and HL60 cells. Sequence analysis revealed both GATA and c-Myb motifs in the enhancer fragment. Mutation of the GATA motif decreased the enhancer activity by 60% in K562 cells. Electrophoretic mobility shift assays showed that both GATA-1 and GATA-2 proteins in K562 nuclear extracts bind to this motif. Cotransfection of the enhancer containing reporter construct with a GATA-1 or GATA-2 expression vector showed that both GATA-1 and GATA-2 transactivated this enhancer, increasing the CAT reporter activity 10-15 fold and 5-fold respectively. Similar analysis of the c-Myb motif by cotransfection with the enhancer CAT reporter construct and a c-Myb expression vector showed that c-Myb transactivated the enhancer by 5-fold. A DNase I-hypersensitive site has been identified in the 258 bp enhancer region. These data suggest that GATA-1 and c-Myb are responsible for the activity of this enhancer in hematopoietic cells and may bind to the enhancer in vivo. In the process of searching for cis-regulatory elements in transgenic mice, we have identified a 1.0 kb fragment that is 50 kb downstream from the promoter and is required for the central nervous system expression of WT1.^ In the search for downstream target genes of WT1, we noted that the proto-oncogene N-myc is coexpressed with the tumor suppressor gene WT1 in the developing kidney and is overexpressed in many Wilms' tumors. Sequence analysis revealed eleven consensus WT1 binding sites located in the 1 kb mouse N-myc promoter. We further showed that the N-myc promoter was down-regulated by WT1 in transient transfection assays. Electrophoretic mobility shift assays showed that oligonucleotides containing the WT1 motifs could bind WT1 protein. Furthermore, a Denys-Drash syndrome mutant of WT1, R394W, that has a mutation in the DNA binding domain, failed to repress the N-myc promoter. This suggests that the repression of the N-myc promoter is mediated by DNA binding of WT1. This finding helps to elucidate the relationship of WT1 and N-myc in tumorigenesis and renal development. ^
Resumo:
Hematopoiesis depends on a pool of quiescent hematopoietic stem/progenitor cells. When exposed to specific cytokines, a portion of these cells enters the cell cycle to generate an amplified progeny. Myeloblastin (MBN) initially was described as involved in proliferation of human leukemia cells. The granulocyte colony-stimulating factor (G-CSF), which stimulates the proliferation of granulocytic precursors, up-regulates MBN expression. Here we show that constitutive overexpression of MBN confers factor-independent growth to murine bone marrow-derived Ba/F3/G-CSFR cells. Our results point to MBN as a G-CSF responsive gene critical to factor-independent growth and indicate that expression of the G-CSF receptor is a prerequisite to this process. A 91-bp MBN promoter region containing PU.1, C/EBP, and c-Myb binding sites is responsive to G-CSF treatment. Although PU.1, C/EBP, and c-Myb transcription factors all were critical for expression of MBN, its up-regulation by G-CSF was associated mainly with PU.1. These findings suggest that MBN is an important target of PU.1 and a key protease for factor-independent growth of hematopoietic cells.
Resumo:
Hybrid polar compounds, of which hexamethylenebisacetamide (HMBA) is the prototype, are potent inducers of differentiation of murine erythroleukemia (MEL) cells and a wide variety of other transformed cells. HMBA has been shown to induce differentiation of neoplastic cells in patients, but is not an adequate therapeutic agent because of dose-limiting toxicity. We report on a group of three potent second generation hybrid polar compounds, diethyl bis-(pentamethylene-N,N-dimethylcarboxamide) malonate (EMBA), suberoylanilide hydroxamic acid (SAHA), and m-carboxycinnamic acid bis-hydroxamide (CBHA) with optimal concentrations for inducing MEL cells of 0.4 mM, 2 microM, and 4 microM, respectively, compared to 5 mM for HMBA. All three agents induce accumulation of underphosphorylated pRB; increased levels of p2l protein, a prolongation of the initial G1 phase of the cell cycle; and accumulation of hemoglobin. However, based upon their effective concentrations, the cross-resistance or sensitivity of an HMBA-resistant MEL cell variant, and differences in c-myb expression during induction, these differentiation-inducing hybrid polar compounds can be grouped into two subsets, HMBA/EMBA and SAHA/CBHA. This classification may prove of value in selecting and planning prospective preclinical and clinical studies toward the treatment of cancer by differentiation therapy.
Resumo:
Myeloid leukemia M1 cells can be induced for growth arrest and terminal differentiation into macrophages in response to interleukin 6 (IL-6) or leukemia inhibitory factor (LIF). Recently, a large number of cytokines and growth factors have been shown to activate the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In the case of IL-6 and LIF, which share a signal transducing receptor gp130, STAT3 is specifically tyrosine-phosphorylated and activated by stimulation with each cytokine in various cell types. To know the role of JAK-STAT pathway in M1 differentiation, we have constructed dominant negative forms of STAT3 and established M1 cell lines that constitutively express them. These M1 cells that overexpressed dominant negative forms showed no induction of differentiation-associated markers including Fc gamma receptors, ferritin light chain, and lysozyme after treatment with IL-6. Expression of either c-myb or c-myc was not downregulated. Furthermore, IL-6- and LIF-mediated growth arrest and apoptosis were completely blocked. Thus these findings demonstrate that STAT3 activation is the critical step in a cascade of events that leads to terminal differentiation of M1 cells.
Resumo:
The cDNAs encoding wild type (WT) human receptor tyrosine kinase c-Kit and a constitutively activated mutant, V816Kit, were introduced into granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent early murine hemopoietic cells, which had been transformed with activated Myb, WTKit cells were able to grow in the presence of the human ligand for Kit, stem cell factor (SCF), but displayed reduced growth and clonogenic potential in either SCF or GM-CSF compared with the parental cells in GM-CSF. In contrast, V816Kit cells grew without factor at a higher rate than the parental cells in GM-CSF and displayed increased clonogenicity. Dissection of the growth characteristics in liquid culture showed that in the presence of appropriate factors, the different populations had similar proliferation rates, but that V816Kit profoundly increased cell survival compared with WTKit or parental cells, This suggests that the signals transduced by WTKit activated with SCF, and by V816Kit, were not identical. Also, WTKit and V816Kit-expressing cells both varied from the early myeloid progenitor phenotype of the parental cells and gave rise to a small number of large to giant adherent cells that expressed macrophage (alpha-naphthyl acetate) esterase and neutrophil (naphtol-AS-D-chloroacetate) esterase, were highly phagocytic and phenotypically resembled histiocytes. Thus, WTKit activated by SCF and V816Kit were able to induce differentiation in a proportion of Myb-transformed myeloid cells. The factor independent V816Kit cells, unlike the parental and WTKit expressing cells, were shown to produce tumors of highly mitotic, invasive cells at various stages of differentiation in syngeneic mice. These results imply that constitutively activated Kit can promote the development of differentiated myeloid tumors and that its oncogenic effects are not restricted to lineages (mast cell and B-cell acute lymphoblastic leukemia), which have been reported previously. Furthermore, the mixed populations of cells in culture and in the tumors phenotypically resembled the leukemic cells from patients with monocytic leukemia with histiocytic differentiation (acute myeloid leukemia-M5c), a newly proposed subtype of myeloid leukemia. (C) 1997 by The American Society of Hematology.
Resumo:
We have previously detected two related murine nuclear proteins, p160 and p67, that can bind to the leucine zipper motif within the negative regulatory domain of the Myb transcription factor. We now describe the molecular cloning of cDNA corresponding to murine p160. The P160 gene is located on mouse chromosome 11, and related sequences are found on chromosomes 1 and 12. The predicted p160 protein is novel, and in agreement with previous studies, we find that the corresponding 4.5-kb mRNA is ubiquitously expressed. We showed that p67 is an N-terminal fragment of p160 which is generated by proteolytic cleavage in certain cell types. The protein encoded by the cloned p160 cDNA and an engineered protein (p67*) comprising the amino-terminal region of p160 exhibit binding specificities for the Myb and Jun leucine zipper regions identical to those of endogenous p160 and p67, respectively. This implies that the Myb-binding site of p160 lies within the N-terminal 580 residues and that the Jun-binding site is C-terminal to this position. Moreover, we show that p67* but not p160 can inhibit transactivation by Myb. Unexpectedly, immunofluorescence studies show that p160 is localized predominantly in the nucleolus. The implications of these results for possible functions of p160 are discussed.
Resumo:
Different species of Leishmania can cause a variety of medically important diseases, whose control and treatment are still health problems. Telomere binding proteins (TBPs) have potential as targets for anti-parasitic chemotherapy because of their importance for genome stability and cell viability. Here, we describe LaTBP1 a protein that has a Myb-like DNA-binding domain, a feature shared by most double-stranded telomeric proteins. Binding assays using full-length and truncated LaTBP1 combined with spectroscopy analysis were used to map the boundaries of the Myb-like domain near to the protein only tryptophan residue. The Myb-like domain of LaTBP1 contains a conserved hydrophobic cavity implicated in DNA-binding activity. A hypothetical model helped to visualize that it shares structural homology with domains of other Myb-containing proteins. Competition assays and chromatin immunoprecipitation confirmed the specificity of LaTBP1 for telomeric and GT-rich DNAs, suggesting that LaTBP1 is a new TBP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to investigate the role of the c-KIT receptor in the progression of human melanoma and the mechanism(s) for the regulation of c-KIT gene expression in human melanoma.^ The molecular changes associated with the transition of melanoma cells from radial growth phase (RGP) to vertical growth phase (VGP) (metastatic phenotype) are not well-defined. Expression of the tyrosine-kinase receptor c-KIT progressively decreases during local tumor growth and invasion of human melanomas. To provide direct evidence that the metastasis of human melanoma is associated with the loss of c-KIT expression, highly metastatic A375SM cells, which express very low or undetectable levels of c-KIT, were tranduced with the human c-KIT gene. We demonstrated that enforced c-KIT expression in highly metastatic human melanoma cells significantly suppressed their tumorigenicity and metastatic propensity in nude mice. In addition, we showed that the ligand for c-KIT, SCF, induces apoptosis in human melanoma cells expressing c-KIT under both in vitro and in vivo conditions. These results suggest that loss of c-KIT receptor may allow malignant melanoma cells to escape SCF/c-KIT-mediated apoptosis, thus contributing to tumor growth and eventually metastasis.^ Furthermore, we investigated the possible mechanism(s) for the down-regulation of c-KIT gene expression in malignant melanoma. Sequence analysis of the c-KIT promoter indicated that this promoter contains several consensus binding-site sequences including three putative AP2 and two Myb sites. Although Myb was shown to be associated with c-KIT expression in human hemotopoietic cells, we found no correlation between c-KIT expression and Myb expression in human melanoma cell lines. In contrast, we showed that c-KIT expression directly correlates with expression of AP2 in human melanoma cells. We found that highly metastatic cells do not express the transcription factor AP2. Expression of AP2 in A375SM cells (c-KIT-negative and AP2-negative) was enough to restore luciferase activity driven by the c-KIT promoter in a dose-dependent manner. On the other hand, co-expression of the dominant-negative form of AP2 (AP2B) in Mel-501 cells (c-KIT-positive and AP2-positive) resulted in two-fold reduction in luciferase activity. Electrophoretic mobility shift assays revealed that the c-KIT promoter contains functional AP2 binding sites which could associate with AP2 protein. Endogenous c-KIT gene expression levels were elevated in AP2 stably-transfected human melanoma A375SM cells. Expression of exogenous AP2 in A375SM cells inhibited their tumorigenicity and metastatic potential in nude mice. The c-KIT ligand, SCF, also induced apoptosis in the AP2 stably-transfected A375SM cells. The identification of AP2 as an important regulator for c-KIT expression suggests that AP2 may have tumor growth and metastasis inhibitory properties, possibly mediated through c-KIT/SCF effects on apoptosis of human melanoma cells. Since AP2 binding sites were found in the promoters of other genes involved in the progression of human melanoma, such as MMP2 (72 kDa collagenase), MCAM/MUC18 and P21/WAF-1, our findings suggest that loss of AP2 expression might be a crucial event in the development of malignant melanoma. ^
Resumo:
The promoter of the bean PAL2 gene (encoding phenylalanine ammonia-lyase; EC 4.3.1.5) is a model for studies of tissue-restricted gene expression in plants. Petal epidermis is one of the tissues in which this promoter is activated in tobacco. Previous work suggested that a major factor establishing the pattern of PAL2 expression in tobacco petals is the tissue distribution of a protein closely related to Myb305, which is a Myb-like transcriptional activator from snapdragon. In the present work, we show that Myb305 expression in tobacco leaves causes ectopic activation of the PAL2 promoter. To achieve Myb305 expression in planta, a viral expression vector was used. This approach combines the utility of transient assays with the possibility of direct biochemical detection of the introduced factor and may have wider application for studying the function of plant transcription factors.
Resumo:
Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch). The p.N540K mutation in the FGFR3 gene occurs in ∼70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control) individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34). One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach) phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.