934 resultados para Branch and bound algorithms
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A method for optimal transmission network expansion planning is presented. The transmission network is modelled as a transportation network. The problem is solved using hierarchical Benders decomposition in which the problem is decomposed into master and slave subproblems. The master subproblem models the investment decisions and is solved using a branch-and-bound algorithm. The slave subproblem models the network operation and is solved using a specialised linear program. Several alternative implementations of the branch-and-bound algorithm have been rested. Special characteristics of the transmission expansion problem have been taken into consideration in these implementations. The methods have been tested on various test systems available in the literature.
Resumo:
An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.
Resumo:
A branch and bound (B& B) algorithm using the DC model, to solve the power system transmission expansion planning by incorporating the electrical losses in network modelling problem is presented. This is a mixed integer nonlinear programming (MINLP) problem, and in this approach, the so-called fathoming tests in the B&B algorithm were redefined and a nonlinear programming (NLP) problem is solved in each node of the B& B tree, using an interior-point method. Pseudocosts were used to manage the development of the B&B tree and to decrease its size and the processing time. There is no guarantee of convergence towards global optimisation for the MINLP problem. However, preliminary tests show that the algorithm easily converges towards the best-known solutions or to the optimal solutions for all the tested systems neglecting the electrical losses. When the electrical losses are taken into account, the solution obtained using the Garver system is better than the best one known in the literature.
Resumo:
This paper presents an algorithm to solve the network transmission system expansion planning problem using the DC model which is a mixed non-linear integer programming problem. The major feature of this work is the use of a Branch-and-Bound (B&B) algorithm to directly solve mixed non-linear integer problems. An efficient interior point method is used to solve the non-linear programming problem at each node of the B&B tree. Tests with several known systems are presented to illustrate the performance of the proposed method. ©2007 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper a novel Branch and Bound (B&B) algorithm to solve the transmission expansion planning which is a non-convex mixed integer nonlinear programming problem (MINLP) is presented. Based on defining the options of the separating variables and makes a search in breadth, we call this algorithm a B&BML algorithm. The proposed algorithm is implemented in AMPL and an open source Ipopt solver is used to solve the nonlinear programming (NLP) problems of all candidates in the B&B tree. Strategies have been developed to address the problem of non-linearity and non-convexity of the search region. The proposed algorithm is applied to the problem of long-term transmission expansion planning modeled as an MINLP problem. The proposed algorithm has carried out on five commonly used test systems such as Garver 6-Bus, IEEE 24-Bus, 46-Bus South Brazilian test systems, Bolivian 57-Bus, and Colombian 93-Bus. Results show that the proposed methodology not only can find the best known solution but it also yields a large reduction between 24% to 77.6% in the number of NLP problems regarding to the size of the systems.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
De nombreux problèmes en transport et en logistique peuvent être formulés comme des modèles de conception de réseau. Ils requièrent généralement de transporter des produits, des passagers ou encore des données dans un réseau afin de satisfaire une certaine demande tout en minimisant les coûts. Dans ce mémoire, nous nous intéressons au problème de conception de réseau avec coûts fixes et capacités. Ce problème consiste à ouvrir un sous-ensemble des liens dans un réseau afin de satisfaire la demande, tout en respectant les contraintes de capacités sur les liens. L'objectif est de minimiser les coûts fixes associés à l'ouverture des liens et les coûts de transport des produits. Nous présentons une méthode exacte pour résoudre ce problème basée sur des techniques utilisées en programmation linéaire en nombres entiers. Notre méthode est une variante de l'algorithme de branch-and-bound, appelée branch-and-price-and-cut, dans laquelle nous exploitons à la fois la génération de colonnes et de coupes pour la résolution d'instances de grande taille, en particulier, celles ayant un grand nombre de produits. En nous comparant à CPLEX, actuellement l'un des meilleurs logiciels d'optimisation mathématique, notre méthode est compétitive sur les instances de taille moyenne et supérieure sur les instances de grande taille ayant un grand nombre de produits, et ce, même si elle n'utilise qu'un seul type d'inégalités valides.
Resumo:
Le problème de conception de réseaux est un problème qui a été beaucoup étudié dans le domaine de la recherche opérationnelle pour ses caractéristiques, et ses applications dans des nombreux domaines tels que le transport, les communications, et la logistique. Nous nous intéressons en particulier dans ce mémoire à résoudre le problème de conception de réseaux avec coûts fixes et sans capacité, en satisfaisant les demandes de tous les produits tout en minimisant la somme des coûts de transport de ces produits et des coûts fixes de conception du réseau. Ce problème se modélise généralement sous la forme d’un programme linéaire en nombres entiers incluant des variables continues. Pour le résoudre, nous avons appliqué la méthode exacte de Branch-and-Bound basée sur une relaxation linéaire du problème avec un critère d’arrêt, tout en exploitant les méthodes de génération de colonnes et de génération de coupes. Nous avons testé la méthode de Branch-and-Price-and-Cut sur 156 instances divisées en cinq groupes de différentes tailles, et nous l’avons comparée à Cplex, l’un des meilleurs solveurs d’optimisation mathématique, ainsi qu’à la méthode de Branch-and- Cut. Notre méthode est compétitive et plus performante sur les instances de grande taille ayant un grand nombre de produits.
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.
Resumo:
De nombreux problèmes liés aux domaines du transport, des télécommunications et de la logistique peuvent être modélisés comme des problèmes de conception de réseaux. Le problème classique consiste à transporter un flot (données, personnes, produits, etc.) sur un réseau sous un certain nombre de contraintes dans le but de satisfaire la demande, tout en minimisant les coûts. Dans ce mémoire, on se propose d'étudier le problème de conception de réseaux avec coûts fixes, capacités et un seul produit, qu'on transforme en un problème équivalent à plusieurs produits de façon à améliorer la valeur de la borne inférieure provenant de la relaxation continue du modèle. La méthode que nous présentons pour la résolution de ce problème est une méthode exacte de branch-and-price-and-cut avec une condition d'arrêt, dans laquelle nous exploitons à la fois la méthode de génération de colonnes, la méthode de génération de coupes et l'algorithme de branch-and-bound. Ces méthodes figurent parmi les techniques les plus utilisées en programmation linéaire en nombres entiers. Nous testons notre méthode sur deux groupes d'instances de tailles différentes (gran-des et très grandes), et nous la comparons avec les résultats donnés par CPLEX, un des meilleurs logiciels permettant de résoudre des problèmes d'optimisation mathématique, ainsi qu’avec une méthode de branch-and-cut. Il s'est avéré que notre méthode est prometteuse et peut donner de bons résultats, en particulier pour les instances de très grandes tailles.
Resumo:
De nombreux problèmes liés aux domaines du transport, des télécommunications et de la logistique peuvent être modélisés comme des problèmes de conception de réseaux. Le problème classique consiste à transporter un flot (données, personnes, produits, etc.) sur un réseau sous un certain nombre de contraintes dans le but de satisfaire la demande, tout en minimisant les coûts. Dans ce mémoire, on se propose d'étudier le problème de conception de réseaux avec coûts fixes, capacités et un seul produit, qu'on transforme en un problème équivalent à plusieurs produits de façon à améliorer la valeur de la borne inférieure provenant de la relaxation continue du modèle. La méthode que nous présentons pour la résolution de ce problème est une méthode exacte de branch-and-price-and-cut avec une condition d'arrêt, dans laquelle nous exploitons à la fois la méthode de génération de colonnes, la méthode de génération de coupes et l'algorithme de branch-and-bound. Ces méthodes figurent parmi les techniques les plus utilisées en programmation linéaire en nombres entiers. Nous testons notre méthode sur deux groupes d'instances de tailles différentes (gran-des et très grandes), et nous la comparons avec les résultats donnés par CPLEX, un des meilleurs logiciels permettant de résoudre des problèmes d'optimisation mathématique, ainsi qu’avec une méthode de branch-and-cut. Il s'est avéré que notre méthode est prometteuse et peut donner de bons résultats, en particulier pour les instances de très grandes tailles.