984 resultados para Bluetooth, Density estimation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a technique for real-time crowd density estimation based on textures of crowd images. In this technique, the current image from a sequence of input images is classified into a crowd density class. Then, the classification is corrected by a low-pass filter based on the crowd density classification of the last n images of the input sequence. The technique obtained 73.89% of correct classification in a real-time application on a sequence of 9892 crowd images. Distributed processing was used in order to obtain real-time performance. © Springer-Verlag Berlin Heidelberg 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marshall's (1970) lemma is an analytical result which implies root-n-consistency of the distribution function corresponding to the Grenander (1956) estimator of a non-decreasing probability density. The present paper derives analogous results for the setting of convex densities on [0,\infty).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During November 2010–February 2011, we used camera traps to estimate the population density of Eurasian lynx Lynx lynx in Ciglikara Nature Reserve, Turkey, an isolated population in southwest Asia. Lynx density was calculated through spatial capture—recapture models. In a sampling eff ort of 1093 camera trap days, we identifi ed 15 independent individuals and estimated a density of 4.20 independent lynx per 100 km2, an unreported high density for this species. Camera trap results also indicated that the lynx is likely to be preying on brown hare Lepus europaeus, which accounted for 63% of the non-target species pictured. As lagomorph populations tend to fl uctuate, the high lynx density recorded in Ciglikara may be temporary and may decline with prey fl uctuation. Therefore we recommend to survey other protected areas in southwestern Turkey where lynx is known or assumed to exist, and continuously monitor the lynx populations with reliable methods in order to understand the populations structure and dynamics, defi ne sensible measures and management plans to conserve this important species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mapping aboveground carbon density in tropical forests can support CO2 emissionmonitoring and provide benefits for national resource management. Although LiDAR technology has been shown to be useful for assessing carbon density patterns, the accuracy and generality of calibrations of LiDAR-based aboveground carbon density (ACD) predictions with those obtained from field inventory techniques should be intensified in order to advance tropical forest carbon mapping. Here we present results from the application of a general ACD estimation model applied with small-footprint LiDAR data and field-based estimates of a 50-ha forest plot in Ecuador?s Yasuní National Park. Subplots used for calibration and validation of the general LiDAR equation were selected based on analysis of topographic position and spatial distribution of aboveground carbon stocks. The results showed that stratification of plot locations based on topography can improve the calibration and application of ACD estimation using airborne LiDAR (R2 = 0.94, RMSE = 5.81 Mg?C? ha?1, BIAS = 0.59). These results strongly suggest that a general LiDAR-based approach can be used for mapping aboveground carbon stocks in western lowland Amazonian forests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

kdens produces univariate kernel density estimates and graphs the result. kdens supplements official Stata's kdensity. Important additions are: adaptive (i.e. variable bandwidth) kernel density estimation, several automatic bandwidth selectors including the Sheather-Jones plug-in estimator, pointwise variability bands and confidence intervals, boundary correction for variables with bounded domain, fast binned approximation estimation. Note that the moremata package, also available from SSC, is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the classical Parzen window estimate as the target function, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density estimates. The proposed algorithm incrementally minimises a leave-one-out test error score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights are finally updated using the multiplicative nonnegative quadratic programming algorithm, which has the ability to reduce the model size further. Except for the kernel width, the proposed algorithm has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Two examples are used to demonstrate the ability of this regression-based approach to effectively construct a sparse kernel density estimate with comparable accuracy to that of the full-sample optimised Parzen window density estimate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human beings perceive images through their properties, like colour, shape, size, and texture. Texture is a fertile source of information about the physical environment. Images of low density crowds tend to present coarse textures, while images of dense crowds tend to present fine textures. This paper describes a new technique for automatic estimation of crowd density, which is a part of the problem of automatic crowd monitoring, using texture information based on grey-level transition probabilities on digitised images. Crowd density feature vectors are extracted from such images and used by a self organising neural network which is responsible for the crowd density estimation. Results obtained respectively to the estimation of the number of people in a specific area of Liverpool Street Railway Station in London (UK) are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a novel nonparametric density estimator and a new data-driven bandwidth selection method with excellent properties. The approach is in- spired by the principles of the generalized cross entropy method. The pro- posed density estimation procedure has numerous advantages over the tra- ditional kernel density estimator methods. Firstly, for the first time in the nonparametric literature, the proposed estimator allows for a genuine incor- poration of prior information in the density estimation procedure. Secondly, the approach provides the first data-driven bandwidth selection method that is guaranteed to provide a unique bandwidth for any data. Lastly, simulation examples suggest the proposed approach outperforms the current state of the art in nonparametric density estimation in terms of accuracy and reliability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dispersal, or the amount of dispersion between an individual's birthplace and that of its offspring, is of great importance in population biology, behavioural ecology and conservation, however, obtaining direct estimates from field data on natural populations can be problematic. The prickly forest skink, Gnypetoscincus queenslandiae, is a rainforest endemic skink from the wet tropics of Australia. Because of its log-dwelling habits and lack of definite nesting sites, a demographic estimate of dispersal distance is difficult to obtain. Neighbourhood size, defined as 4 piD sigma (2) (where D is the population density and sigma (2) the mean axial squared parent-offspring dispersal rate), dispersal and density were estimated directly and indirectly for this species using mark-recapture and microsatellite data, respectively, on lizards captured at a local geographical scale of 3 ha. Mark-recapture data gave a dispersal rate of 843 m(2)/generation (assuming a generation time of 6.5 years), a time-scaled density of 13 635 individuals * generation/km(2) and, hence, a neighbourhood size of 144 individuals. A genetic method based on the multilocus (10 loci) microsatellite genotypes of individuals and their geographical location indicated that there is a significant isolation by distance pattern, and gave a neighbourhood size of 69 individuals, with a 95% confidence interval between 48 and 184. This translates into a dispersal rate of 404 m(2)/generation when using the mark-recapture density estimation, or an estimate of time-scaled population density of 6520 individuals * generation/km(2) when using the mark-recapture dispersal rate estimate. The relationship between the two categories of neighbourhood size, dispersal and density estimates and reasons for any disparities are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an analysis of motor vehicle insurance claims relating to vehicle damage and to associated medical expenses. We use univariate severity distributions estimated with parametric and non-parametric methods. The methods are implemented using the statistical package R. Parametric analysis is limited to estimation of normal and lognormal distributions for each of the two claim types. The nonparametric analysis presented involves kernel density estimation. We illustrate the benefits of applying transformations to data prior to employing kernel based methods. We use a log-transformation and an optimal transformation amongst a class of transformations that produces symmetry in the data. The central aim of this paper is to provide educators with material that can be used in the classroom to teach statistical estimation methods, goodness of fit analysis and importantly statistical computing in the context of insurance and risk management. To this end, we have included in the Appendix of this paper all the R code that has been used in the analysis so that readers, both students and educators, can fully explore the techniques described

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We continue the development of a method for the selection of a bandwidth or a number of design parameters in density estimation. We provideexplicit non-asymptotic density-free inequalities that relate the $L_1$ error of the selected estimate with that of the best possible estimate,and study in particular the connection between the richness of the classof density estimates and the performance bound. For example, our methodallows one to pick the bandwidth and kernel order in the kernel estimatesimultaneously and still assure that for {\it all densities}, the $L_1$error of the corresponding kernel estimate is not larger than aboutthree times the error of the estimate with the optimal smoothing factor and kernel plus a constant times $\sqrt{\log n/n}$, where $n$ is the sample size, and the constant only depends on the complexity of the family of kernels used in the estimate. Further applications include multivariate kernel estimates, transformed kernel estimates, and variablekernel estimates.