974 resultados para Bit Error Rate
Resumo:
Coded OFDM is a transmission technique that is used in many practical communication systems. In a coded OFDM system, source data are coded, interleaved and multiplexed for transmission over many frequency sub-channels. In a conventional coded OFDM system, the transmission power of each subcarrier is the same regardless of the channel condition. However, some subcarrier can suffer deep fading with multi-paths and the power allocated to the faded subcarrier is likely to be wasted. In this paper, we compute the FER and BER bounds of a coded OFDM system given as convex functions for a given channel coder, inter-leaver and channel response. The power optimization is shown to be a convex optimization problem that can be solved numerically with great efficiency. With the proposed power optimization scheme, near-optimum power allocation for a given coded OFDM system and channel response to minimize FER or BER under a constant transmission power constraint is obtained
Resumo:
This article deals with classification problems involving unequal probabilities in each class and discusses metrics to systems that use multilayer perceptrons neural networks (MLP) for the task of classifying new patterns. In addition we propose three new pruning methods that were compared to other seven existing methods in the literature for MLP networks. All pruning algorithms presented in this paper have been modified by the authors to do pruning of neurons, in order to produce fully connected MLP networks but being small in its intermediary layer. Experiments were carried out involving the E. coli unbalanced classification problem and ten pruning methods. The proposed methods had obtained good results, actually, better results than another pruning methods previously defined at the MLP neural network area. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this contribution a novel iterative bit- and power allocation (IBPA) approach has been developed when transmitting a given bit/s/Hz data rate over a correlated frequency non-selective (4× 4) Multiple-Input MultipleOutput (MIMO) channel. The iterative resources allocation algorithm developed in this investigation is aimed at the achievement of the minimum bit-error rate (BER) in a correlated MIMO communication system. In order to achieve this goal, the available bits are iteratively allocated in the MIMO active layers which present the minimum transmit power requirement per time slot.
Resumo:
This letter presents an analytical model for evaluating the Bit Error Rate (BER) of a Direct Sequence Code Division Multiple Access (DS-CDMA) system, with M-ary orthogonal modulation and noncoherent detection, employing an array antenna operating in a Nakagami fading environment. An expression of the Signal to Interference plus Noise Ratio (SINR) at the output of the receiver is derived, which allows the BER to be evaluated using a closed form expression. The analytical model is validated by comparing the obtained results with simulation results.
Resumo:
In this paper, we propose a resource allocation scheme to minimize transmit power for multicast orthogonal frequency division multiple access systems. The proposed scheme allows users to have different symbol error rate (SER) across subcarriers and guarantees an average bit error rate and transmission rate for all users. We first provide an algorithm to determine the optimal bits and target SER on subcarriers. Because the worst-case complexity of the optimal algorithm is exponential, we further propose a suboptimal algorithm that separately assigns bit and adjusts SER with a lower complexity. Numerical results show that the proposed algorithm can effectively improve the performance of multicast orthogonal frequency division multiple access systems and that the performance of the suboptimal algorithm is close to that of the optimal one. Copyright © 2012 John Wiley & Sons, Ltd. This paper proposes optimal and suboptimal algorithms for minimizing transmitting power of multicast orthogonal frequency division multiple access systems with guaranteed average bit error rate and data rate requirement. The proposed scheme allows users to have different symbol error rate across subcarriers and guarantees an average bit error rate and transmission rate for all users. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
The authors present a comparative analysis between a triple-band S-C-L erbium-doped fibre amplifier and a commercial semiconductor optical amplifier in a CWDM application scenario. Both technologies were characterised for gain and noise figures from 1480 to 1610 nm (S, C and L bands) and their systemic performances were evaluated in terms of bit error rate measurements for a wide range of optical power levels.
Resumo:
In this work, a wide analysis of local search multiuser detection (LS-MUD) for direct sequence/code division multiple access (DS/CDMA) systems under multipath channels is carried out considering the performance-complexity trade-off. It is verified the robustness of the LS-MUD to variations in loading, E(b)/N(0), near-far effect, number of fingers of the Rake receiver and errors in the channel coefficients estimates. A compared analysis of the bit error rate (BER) and complexity trade-off is accomplished among LS, genetic algorithm (GA) and particle swarm optimization (PSO). Based on the deterministic behavior of the LS algorithm, it is also proposed simplifications over the cost function calculation, obtaining more efficient algorithms (simplified and combined LS-MUD versions) and creating new perspectives for the MUD implementation. The computational complexity is expressed in terms of the number of operations in order to converge. Our conclusion pointed out that the simplified LS (s-LS) method is always more efficient, independent of the system conditions, achieving a better performance with a lower complexity than the others heuristics detectors. Associated to this, the deterministic strategy and absence of input parameters made the s-LS algorithm the most appropriate for the MUD problem. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
This paper analyzes the complexity-performance trade-off of several heuristic near-optimum multiuser detection (MuD) approaches applied to the uplink of synchronous single/multiple-input multiple-output multicarrier code division multiple access (S/MIMO MC-CDMA) systems. Genetic algorithm (GA), short term tabu search (STTS) and reactive tabu search (RTS), simulated annealing (SA), particle swarm optimization (PSO), and 1-opt local search (1-LS) heuristic multiuser detection algorithms (Heur-MuDs) are analyzed in details, using a single-objective antenna-diversity-aided optimization approach. Monte- Carlo simulations show that, after convergence, the performances reached by all near-optimum Heur-MuDs are similar. However, the computational complexities may differ substantially, depending on the system operation conditions. Their complexities are carefully analyzed in order to obtain a general complexity-performance framework comparison and to show that unitary Hamming distance search MuD (uH-ds) approaches (1-LS, SA, RTS and STTS) reach the best convergence rates, and among them, the 1-LS-MuD provides the best trade-off between implementation complexity and bit error rate (BER) performance.
Resumo:
A major limitation in any high-performance digital communication system is the linearity region of the transmitting amplifier. Nonlinearities typically lead to signal clipping. Efficient communication in such conditions requires maintaining a low peak-to-average power ratio (PAR) in the transmitted signal while achieving a high throughput of data. Excessive PAR leads either to frequent clipping or to inadequate resolution in the analog-to-digital or digital-to-analog converters. Currently proposed signaling schemes for future generation wireless communications suffer from a high PAR. This paper presents a new signaling scheme for channels with clipping which achieves a PAR as low as 3. For a given linear range in the transmitter's digital-to-analog converter, this scheme achieves a lower bit-error rate than existing multicarrier schemes, owing to increased separation between constellation points. We present the theoretical basis for this new scheme, approximations for the expected bit-error rate, and simulation results. (C) 2002 Elsevier Science (USA).
Resumo:
Low-density parity-check (LDPC) codes are nowadays one of the hottest topics in coding theory, notably due to their advantages in terms of bit error rate performance and low complexity. In order to exploit the potential of the Wyner-Ziv coding paradigm, practical distributed video coding (DVC) schemes should use powerful error correcting codes with near-capacity performance. In this paper, new ways to design LDPC codes for the DVC paradigm are proposed and studied. The new LDPC solutions rely on merging parity-check nodes, which corresponds to reduce the number of rows in the parity-check matrix. This allows to change gracefully the compression ratio of the source (DCT coefficient bitplane) according to the correlation between the original and the side information. The proposed LDPC codes reach a good performance for a wide range of source correlations and achieve a better RD performance when compared to the popular turbo codes.
Resumo:
The article provides a method for long-term forecast of frame alignment losses based on the bit-error rate monitoring for structure-agnostic circuit emulation service over Ethernet in a mobile backhaul network. The developed method with corresponding algorithm allows to detect instants of probable frame alignment losses in a long term perspective in order to give engineering personnel extra time to take some measures aimed at losses prevention. Moreover, long-term forecast of frame alignment losses allows to make a decision about the volume of TDM data encapsulated into a circuit emulation frame in order to increase utilization of the emulated circuit. The developed long-term forecast method formalized with the corresponding algorithm is recognized as cognitive and can act as a part of network predictive monitoring system.
Resumo:
The turn-on process of a multimode VCSEL is investigated from a statistical point of view. Special attention is paid to quantities such as time jitter and bit error rate. The single-mode performance of VCSEL¿s during current modulation is compared to that of edge-emitting lasers.