988 resultados para Biodiesel purification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid-liquid extraction is utilized for purification of biomolecules by Aqueous Biphasic Systems (ABS), since this process does not damage the biotechnological potential of these compounds. In this work, using the free software Scilab®, the fractionated liquid-liquid extraction was studied aiming a lipase (target enzyme) partition in a water + PEG + DEX system. Lisozime was considered as contaminant. As computer simulations has been extensively used when a first estimation of technical feasibility of process is desired, this work demonstred that the system is viable for recovery the 80 % till 90 % the target enzyme, but should be noted that the trial aimed only the fractionation of the enzyme target of a contaminant, not its concentration, which should be done by another process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The substitution of diesel by biodiesel meets the current scenario to increase the consumption of alternative energy sources promoting sustainable development of a country. However, the production of biodiesel concurrently generates the formation of glycerine in the process is a by-product. The main application of glycerine is in the food industry, cosmetics, soaps, pharmaceuticals, among others, but these segments are not capable of absorbing the generated volume of glycerine, whereas the total volume of the biodiesel produced about 10% correspond to glycerine. Glycerine obtained from the transesterification reaction (necessary for production of biodiesel) triglycerides and alcohol contains certain impurities such as water, salts, esters, alcohol, and residual oil, which decrease the value. Thus, the purification process or the direct use of glycerine become essential to make it competitive biodiesel production process. This work aims to evaluate the different processes of purification and the use of glycerine obtained as by-product in the production of biodiesel. The research was theoretical, based on technical articles and theses published on this subject, and from these databases was established a summary of the most important processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five microbial lipase preparations from several sources were immobilized by hydrophobic adsorption on small or large poly-hydroxybutyrate (PHB) beads and the effect of the support particle size on the biocatalyst activity was assessed in the hydrolysis of olive oil, esterification of butyric acid with butanol and transesterification of babassu oil (Orbignya sp.) with ethanol. The catalytic activity of the immobilized lipases in both olive oil hydrolysis and biodiesel synthesis was influenced by the particle size of PHB and lipase source. In the esterification reaction such influence was not observed. Geobacillus thermocatenulatus lipase (BTL2) was considered to be inadequate to catalyze biodiesel synthesis, but displayed high esterification activity. Butyl butyrate synthesis catalyzed by BTL2 immobilized on small PHB beads gave the highest yield (approximate to 90 mmol L-1). In biodiesel synthesis, the catalytic activity of the immobilized lipases was significantly increased in comparison to the free lipases. Full conversion of babassu oil into ethyl esters was achieved at 72 h in the presence of Pseudozyma antarctica type B (CALB), Thermomyces lanuginosus lipase (Lipex (R) 100L) immobilized on either small or large PHB beads and Pseudomonas fluorescens (PFL) immobilized on large PHB beads. The latter preparation presented the highest productivity (40.9 mg of ethyl esters mg(-1) immobilized protein h(-1)). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quest for energy security and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting fossil derived carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Biodiesel is one of the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands. However, current practises to produce biodiesel via transesterification employing homogeneous acids and bases result in costly fuel purification processes and undesired pollution. Life-cycle calculations on biodiesel synthesis from soybean feedstock show that the single most energy intensive step is the catalytic conversion of TAGs into biodiesel, accounting for 87% of the total primary energy input, which largely arises from the quench and separation steps. The development of solid acid and base catalysts that respectively remove undesired free fatty acid (FFA) impurities, and transform naturally occurring triglycerides found within plant oils into clean biodiesel would be desirable to improve process efficiency. However, the microporous nature of many conventional catalysts limits their ability to convert bulky and viscous feeds typical of plant or algal oils. Here we describe how improved catalyst performance, and overall process efficiency can result from a combination of new synthetic materials based upon templated solid acids and bases with hierarchical structures, tailored surface properties and use of intensified process allowing continuous operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dwindling oil reserves and growing concerns over CO2 emissions and associated climate change are driving the utilisation of renewable feedstocks as alternative, sustainable fuel sources. While rising oil prices are improving the commercial feasibility of biodiesel production, many current processes still employ homogeneous acid and/or base catalysts to transform plant or algae oil into the fatty acid methyl ester (FAME) components of biodiesel. Fuel purification requires energy intensive aqueous quench and neutralization steps, thus the rational design of new high activity catalysts is required to deliver biodiesel as a major player in the 21st century sustainable energy portfolio. Advances in the development of heterogeneous catalysts for biodiesel synthesis require catalysts with pore architectures designed to improve the accessibility of bulky viscous reactants typical of plant oils. Here we discuss how improvements to active site accessibility and catalyst activity in transesterification or esterification reactions can be achieved either by designing hierarchical pore networks or by pore expansion and use of interconnected pore architectures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concerns over dwindling oil reserves, carbon dioxide emissions from fossil fuel sources and associated climate change is driving the urgent need for clean, renewable energy supplies. The conversion of triglycerides to biodiesel via catalytic transesterification remains an energetically efficient and attractive means to generate transportation fuel1. However, current biodiesel manufacturing routes employing soluble alkali based catalysts are very energy inefficient producing copious amounts of contaminated water waste during fuel purification. Technical advances in catalyst and reactor design and introduction of non-food based feedstocks are thus required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. This presentation will give an overview of some recent developments in the design of solid acid and base catalysts for biodiesel synthesis. A particular focus will be on the benefits of designing materials with interconnected hierarchical macro-mesoporous networks to enhance mass-transport of viscous plant oils during reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiesel is an alternative fuel, renewable, biodegradable and nontoxic. The transesterification of vegetable oils or animal fat with alcohol is most common form of production of this fuel. The procedure for production of biodiesel occurs most commonly through the transesterification reaction in which catalysts are used to accelerate and increase their income and may be basic, acid or enzyme. The use of homogeneous catalysis requires specific conditions and purification steps of the reaction products (alkyl ester and glycerol) and removal of the catalyst at the end of the reaction. As an alternative to improve the yield of the transesterification reaction, minimize the cost of production is that many studies are being conducted with the application of heterogeneous catalysis. The use of nano-structured materials as catalysts in the production of biodiesel is a biofuel alternative for a similar to mineral diesel. Although slower, can esterify transesterified triglycerides and free fatty acids and suffer little influence of water, which may be present in the raw material. This study aimed at the synthesis, characterization and application of nano-structured materials as catalysts in the transesterification reaction of soybean oil to produce biodiesel by ethylic route. The type material containing SBA-15 mesoporous lanthanum embedded within rightly Si / La = 50 was used catalyst. Solid samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, nitrogen adsorption and desorption. For the transesterification process, we used a molar ratio of 20:1 alcohol and oil with 0.250 g of catalyst at 60°C and times of 6 hours of reaction. It was determined the content of ethyl esters by H-NMR analysis and gas chromatography. It was found that the variable of conversion obtained was 80%, showing a good catalytic activity LaSBA-15 in the transesterification of vegetable oils via ethylic route

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé : Au Canada, près de 80% des émissions totales, soit 692 Mt eq. CO[indice inférieur 2], des gaz à effet de serre (GES) sont produits par les émissions de dioxyde de carbone (CO[indice inférieur 2]) provenant de l’utilisation de matières fossiles non renouvelables. Après la Conférence des Nations Unies sur les changements climatiques, COP21 (Paris, France), plusieurs pays ont pour objectif de réduire leurs émissions de GES. Dans cette optique, les microalgues pourraient être utilisées pour capter le CO[indice inférieur 2] industriel et le transformer en biomasse composée principalement de lipides, de glucides et de protéines. De plus, la culture des microalgues n’utilise pas de terre arable contrairement à plusieurs plantes oléagineuses destinées à la production de biocarburants. Bien que les microalgues puissent être transformées en plusieurs biocarburants tels le bioéthanol (notamment par fermentation des glucides) ou le biométhane (par digestion anaérobie), la transformation des lipides en biodiesel pourrait permettre de réduire la consommation de diesel produit à partir de pétrole. Cependant, les coûts reliés à la production de biodiesel à partir de microalgues demeurent élevés pour une commercialisation à court terme en partie parce que les microalgues sont cultivées en phase aqueuse contrairement à plusieurs plantes oléagineuses, ce qui augmente le coût de récolte de la biomasse et de l’extraction des lipides. Malgré le fait que plusieurs techniques de récupération des lipides des microalgues n’utilisant pas de solvant organique sont mentionnées dans la littérature scientifique, la plupart des méthodes testées en laboratoire utilisent généralement des solvants organiques. Les lipides extraits peuvent être transestérifiés en biodiesel en présence d’un alcool tel que le méthanol et d’un catalyseur (catalyses homogène ou hétérogène). Pour la commercialisation du biodiesel à partir de microalgues, le respect des normes ASTM en vigueur est un point essentiel. Lors des essais en laboratoire, il a été démontré que l’extraction des lipides en phase aqueuse était possible afin d’obtenir un rendement maximal en lipides de 36% (m/m, base sèche) en utilisant un prétraitement consistant en une ébullition de la phase aqueuse contenant les microalgues et une extraction par des solvants organiques. Pour l’estérification, en utilisant une résine échangeuse de cations (Amberlyst-15), une conversion des acides gras libres de 84% a été obtenue à partir des lipides de la microalgue Chlorella protothecoïdes dans les conditions suivantes : température : 120°C, pression autogène, temps de réaction : 60 min, ratio méthanol/lipides: 0.57 mL/g et 2.5% (m/m) Amberlyst-15 par rapport aux lipides. En utilisant ces conditions avec une catalyse homogène (acide sulfurique) et une seconde étape alcaline avec de l’hydroxyde de potassium (température : 60°C ; temps de réaction : 22.2 min; ratio catalyseur microalgue : 2.48% (m/m); ratio méthanol par rapport aux lipides des microalgues : 31.4%), un rendement en esters méthyliques d’acides gras (EMAG) de 33% (g EMAG/g lipides) a été obtenu à partir des lipides de la microalgue Scenedesmus Obliquus. Les résultats démontrent que du biodiesel peut être produit à partir de microalgues. Cependant, basé sur les présents résultats, il sera necessaire de mener d’autre recherche pour prouver que les microalgues sont une matière première d’avenir pour la production de biodiesel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closteroviruslike particles, designated as grapevine corky bark-associated virus (GCBaV), were purified from mature leaves and stem phloem tissue of a corky bark-affected grapevine that had indexed negative for other grapevine viruses. Electron microscopy of purified preparations revealed the presence of flexuous rod-shaped viruslike particles that were about 13 nm in diameter and between 1,400 and 2,000 nm long, with a helical pitch of 3.4 nm. In purified preparations, the GCBaV particles degraded within a few weeks, unlike grapevine leafroll associated virus (GLRaV), which was stable for more than 1 mo under the same storage condition. The molecular weight of the coat protein of GCBaV was 24,000. A large dsRNA molecule (about 15.3 kbp), along with lower molecular weight species, was detected in tissues of corky bark-diseased grapevines, but not in healthy grapevines. Polyclonal antisera were produced in rabbits against purified or partially purified virus preparations. In direct enzyme-linked immunosorbent assay (ELISA), antisera to GCBaV did not react to the serologically distinct types (II and III) of the long closteroviruses associated with grapevine leafroll disease and grapevine virus A (GVA), and vice versa. This antiserum also reacted in ELISA with other corky bark-affected grapevines. Our data suggest that closteroviruslike particles, designated as GCBaV, may be the causal agent of corky bark disease. However, definitive proof is still lacking. The inclusion of GCBaV in the group of closteroviruses with citrus tristeza virus is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on alternative fuel for the vehemently growing number of automotivesis intensified due to environmental reasons rather than turmoil in energy price and supply. From the policy and steps to emphasis the use of biofuel by governments all around the world, this can be comprehended that biofuel have placed itself as a number one substitute for fossil fuels. These phenomena made Southeast Asia a prominent exporter of biodiesel. But thrust in biodiesel production from oilseeds of palm and Jatropha curcas in Malaysia, Indonesia and Thailand is seriously threatening environmental harmony. This paper focuses on this critical issue of biodiesels environmental impacts, policy, standardization of this region as well as on the emission of biodiesel in automotive uses. To draw a bottom line on feasibilities of different feedstock of biodiesel, a critical analysis on oilseed yield rate, land use, engine emissions and oxidation stability is reviewed. Palm oil based biodiesel is clearly ahead in all these aspects of feasibility, except in the case of NOx where it lags from conventional petro diesel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HDTMA+ pillared montmorillonites were obtained by pillaring different amounts of the surfactant hexadecyltrimethylammonium bromide (HDTMAB) into sodium montmorillonite (Na-Mt) in an aqueous solution. The optimum conditions and batch kinetics of sorption of p-nitrophenol from aqueous solutions were reported. The solu-tion pH had a very important effect on the sorption of p-nitrophenol. The maximum p-nitrophenol absorption/adsorption occurs when solution pH (7.15~7.35) is approx-imately equal to the pKa (7.16) of the p-nitrophenol ion deprotonation reaction. X-ray diffraction analysis showed that surfactant cations had been pillared into the interlayer and the p-nitrophenol affected the arrangement of surfactant. With the increased con-centration of surfactant cations, the arrangement of HDTMA+ within the clay inter-layer changes and the sorption of p-nitrophenol increases. HDTMA+ pillared mont-morillonites are more effective than Na-Mt for the adsorption of p-nitrophenol from aqueous solutions. The Langmuir, Freundlich and dual-mode sorption were tested to fit the sorption isotherms.