821 resultados para Biodiesel, Fatty Acid Methyl Ester (FAME)
Valorization of olive pomace through combination of biocatalysis with supercritical fluid technology
Resumo:
A supercritical carbon dioxide (scCO2) based oil extraction method was implemented on olive pomace (alperujo), and an oil yield of 25,5 +/- 0,8% (goil/gdry residue) was obtained. By Soxhlet extraction with hexane, an oil extraction yield of 28,9 +/- 0,8 % was obtained, which corresponds to an efficiency of 88,4 +/- 4,8 % for the supercritical method. The scCO2 extraction process was optimized for operating conditions of 50 MPa and 348,15 K, for which an oil loading of 32,60 g oil/kg CO2 was calculated. As a proof of concept, olive pomace was used as feedstock for biodiesel production, in a process combining the use of lipase as a catalyst with the use of scCO2 as a solvent, and integrating the steps of oil extraction, oil to biodiesel transesterification and subsequent separation of the latter. In the conducted experiments, FAME (fatty acid methyl ester) purities of 90% were obtained, with the following operating parameters: an oil:methanol molar ratio of 1:24; a residence time of 7,33 and 11,6 mins; a pressure of 40 MPa; a temperature of 313,15 K; and Lipozyme (Mucor miehei; Sigma-Aldritch) as an enzyme. However, oscillations of FAME purity were registered throughout the experiments, which could possibly be due to methanol accumulation in the enzymatic reactor. Finally, the phenolic content of olive pomace, and the effect of the drying process – oven or freeze-drying – and the extraction methods – hydro-alcoholic method and supercritical method – on the phenolic content were analysed. It was verified that the oven-drying process on the olive pomace preserved 90,1 +/- 3,6 % of the total phenolic content. About 62,3 +/- 5,53% of the oven-dried pomace phenolic content was extracted using scCO2 at 60 MPa and 323,15 K. Seven individual phenols – hydroxytyrosol, tyrosol, oleuropein, quercetin, caffeic acid, ferulic acid and p-coumaric acid – were identified and quantified by HPLC.
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Biologia
Resumo:
Diplomityön tavoitteena oli kehittää prosessi, jolla rypsiöljystä voidaan valmistaa dieselöljyn korvaavaa biodieseliä. Työssä tutustuttiin raaka-aineiden sekä sivu- ja lopputuotteiden aine- ja laatuominaisuuksiin, biodieselin käytettävyyteen ja käytössä oleviin valmistusprosesseihin. Työn aikana kehitettiin uusi tekniikka biodieselin tuottamiseen. Diplomityön tuloksena syntyi pilot-laitteen suunnitelma, jonka mukaan laite rakennettiin. Pilot-laitteen koeajot varmistivat tekniikan toimivuuden ja lopputuote täyttää biodieselille asetetut vaatimukset. Menetelmä tarvitsee vielä jatkokehittelyä tuotantokustannuksien alentamiseksi.
Resumo:
In this work, theoretical and experimental infrared spectra of fatty acid methyl esters (FAME) contained in soybean biodiesel were analyzed seeking the assignments of the relevant vibrational modes to characterize crude soybean oil and soybean biodiesel. The results showed the usefulness of infrared spectra for monitoring saturated and unsaturated compounds as well as impurities (mainly glycerol) in raw samples. This is the first step toward proposing an efficient molecular spectroscopy routine to certify biodiesel fuel.
Resumo:
The free mycolic acid fraction from Rhodococcus lentifragmentus was derivatized to methyl esters and further fractionated into saturated (F-0), monounsaturated (F-1) and diunsaturated (F-2) species using argentation-TLC. Methyl esters fractions F-0, F-1 and F-2, accounting for approximately 7.4%, 53.1% and 39.5%, respectively, were analyzed by electron impact (EI) and chemical ionization (CI) mass spectrometries. According to EI-MS, peaks observed for M(+)-18, that were prominent compared to those representing M(+)-32 and M(+)-(18 + 32), indicated that the carbon chain size ranged from C-36 to C-48. The pyrolytic cleavage of methyl mycolates (R(2)-CHOH-CH(R(1))-COOCH3), following the McLafferty rearrangement released fragment ions corresponding to, (a) the alpha-subunit, representing the fatty acid methyl ester (R(1)-CH2-COOCH3), methyl hexadecanoate, methyl tetradecanoate and methyl dodecanoate in decreasing order of relative intensity of peaks, and (b) the beta-subunit, representing the meroaldehyde moiety (R(2)-CHO). The saturated meroaldehyde species exhibited peaks representing meroaldehyde minus 18 mass units in which R(2) ranged from C19H39 to C31H63. The monunsaturated species exhibited peaks representing the meroaldehyde in which R(2) ranged from C19H37 to C31H61; peaks corresponding to meroaldehyde minus 18 mass units appeared only in the most abundant components, C29H57CHO, C27H53CHO, C25H49CHO and C31H61CHO, in a decreasing order of relative abundance. The diunsaturated species exhibited peaks essentially corresponding to meroaldehyde in which R(2) corresponded to C31H59 and C29H55; the latter displayed a relative intensity that was about one-half compared to that of the former. Fractions F-0, F-1 and F-2 showed a more intense pyrolytic fragmentation under CI-MS in contrast to results found under EI-MS. Therefore, peaks representing the alpha-subunit and the beta-subunit were more prominent than the ones representing the fragmentation of the hydrocarbon chain. Moreover, the beta-subunit of saturated species exhibited peaks corresponding to meroaldehyde plus hydrogen, and no dehydration of the beta-subunit occurred in this case. In turn, the beta-subunit of monounsaturated and diunsaturated species showed peaks representing both the meroaldehyde plus hydrogen and its dehydration product plus hydrogen. Thus, the presence of unsaturation in the meroaldehyde subunit of methyl mycolate facilitates appearance of dehydration fragment ions under chemical ionization procedure.
Resumo:
Seaweeds are photosynthetic organisms important to their ecosystem and constitute a source of compounds with several different applications in the pharmaceutical, cosmetic and biotechnology industries, such as triacylglycerols, which can be converted to fatty acid methyl esters that make up biodiesel, an alternative source of fuel applied in economic important areas. This study evaluates the fatty acid profiles and concentrations of three Brazilian seaweed species, Hypnea musciformis (Wulfen) J.V. Lamouroux (Rhodophya), Sargassum cymosum C. Agardh (Heterokontophyta), and Ulva lactuca L. (Chlorophyta), comparing three extraction methods (Bligh & Dyer - B&D; AOAC Official Methods - AOM; and extraction with methanol and ultrasound - EMU) and two transesterification methods (7% BF3 in methanol - BF3; and 5% HCl in methanol - HCl). The fatty acid contents of the three species of seaweeds were significantly different when extracted and transesterified by the different methods. Moreover, the best method for one species was not the same for the other species. The best extraction and transesterification methods for H. musciformis, S. cymosum and U. lactuca were, respectively, AOM-HCl, B&D-BF3 and B&D-BF3/B&D-HCl. These results point to a matrix effect and the method used for the analysis of the fatty acid content of different organisms should be selected carefully.
Resumo:
Dissertação submetida à Universidade de Lisboa, Faculdade de Ciências para a obtenção do Grau de Mestre em Microbiologia Aplicada.
Resumo:
Doutoramento em Engenharia dos Biossistemas - Instituto Superior de Agronomia - UL
Resumo:
A number of fatty acid ethyl esters (FAEEs) have recently been detected in meconium samples. Several of these FAEEs have been evaluated as possible biomarkers for in utero ethanol exposure. In the present study, a method was optimized and validated for the simultaneous determination of eight FAEEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate and ethyl arachidonate) in meconium samples. FAEEs were extracted by headspace solid-phase microextraction. Analyte detection and quantification were carried out using GC-MS operated in chemical ionization mode. The corresponding D5-ethyl esters were synthesized and used as internal standards. The LOQ and LOD for each analyte were <150 and <100 ng/g, respectively. The method showed good linearity (r(2)>0.98) in the concentration range studied (LOQ -2000 ng/g). The intra- and interday imprecision, given by the RSD of the method, was lower than 15% for all FAEEs studied. The validated method was applied to 63 authentic specimens. FAEEs could be detected in alcohol-exposed newborns ( >600 ng/g cumulative concentration). Interestingly, FAEEs could also be detected in some non-exposed newborns, although the concentrations were much lower than those measured in exposed cases.
Resumo:
The objective of this work is to investigate the production of fatty acid ethyl esters from soybean oil in compressed propane using a non-commercial lipase from Yarrowia lipolytica and two commercial ones as catalysts, Amano PS and Amano AY30. The experiments were performed in the temperature range of 35-65 °C. at 50 bar, enzyme concentration of 5 wt%, oil to ethanol molar ratio of 1:6 and 1:9, and solvent to substrates mass ratio of 2:1 and 4:1. The results indicated that low reaction conversions were generally obtained with the use of commercial and non-commercial lipases in pressurized propane medium. On the other hand, the aspects of low solvent to substrates mass ratio and mild temperature and pressure operating conditions used to produce ethyl esters justify further investigations to improve reaction yields.
Resumo:
The forensic utility of fatty acid ethyl esters (FAEEs) in dried blood spots (DBS) as short-term confirmatory markers for ethanol intake was examined. An LC-MS/MS method for the determination of FAEEs in DBS was developed and validated to investigate FAEE formation and elimination in a drinking study, whereby eight subjects ingested 0.66-0.84 g/kg alcohol to reach blood alcohol concentrations (BAC) of 0.8 g/kg. Blood was taken every 1.5-2 h, BAC was determined, and dried blood spots were prepared, with 50 μL of blood, for the determination of FAEEs. Lower limits of quantitation (LLOQ) were between 15 and 37 ng/mL for the four major FAEEs. Validation data are presented in detail. In the drinking study, ethyl palmitate and ethyl oleate proved to be the two most suitable markers for FAEE determination. Maximum FAEE concentrations were reached in samples taken 2 or 4 h after the start of drinking. The following mean peak concentrations (c̅ max) were reached: ethyl myristate 14 ± 4 ng/mL, ethyl palmitate 144 ± 35 ng/mL, ethyl oleate 125 ± 55 ng/mL, ethyl stearate 71 ± 21 ng/mL, total FAEEs 344 ± 91 ng/mL. Detectability of FAEEs was found to be on the same time scale as BAC. In liquid blood samples containing ethanol, FAEE concentrations increase post-sampling. This study shows that the use of DBS fixation prevents additional FAEE formation in blood samples containing ethanol. Positive FAEE results obtained by DBS analysis can be used as evidence for the presence of ethanol in the original blood sample. Graphical Abstract Time courses for fatty acid ethyl ester (FAEE) concentrations in DBS and ethanol concentrations for subject 1 over a period of 7 h. Ethanol ingestion occured during the first hour of the time course.
Resumo:
The use of biofuels in the aviation sector has economic and environmental benefits. Among the options for the production of renewable jet fuels, hydroprocessed esters and fatty acids (HEFA) have received predominant attention in comparison with fatty acid methyl esters (FAME), which are not approved as additives for jet fuels. However, the presence of oxygen in methyl esters tends to reduce soot emissions and therefore particulate matter emissions. This sooting tendency is quantified in this work with an oxygen-extended sooting index, based on smoke point measurements. Results have shown considerable reduction in the sooting tendency for all biokerosenes (produced by transesterification and eventually distillation) with respect to fossil kerosenes. Among the tested biokerosenes, that made from palm kernel oil was the most effective one, and nondistilled methyl esters (from camelina and linseed oils) showed lower effectiveness than distilled biokerosenes to reduce the sooting tendency. These results may constitute an additional argument for the use of FAME’s as blend components of jet fuels. Other arguments were pointed out in previous publications, but some controversy has aroused over the use of these components. Some of the criticism was based on the fact that the methods used in our previous work are not approved for jet fuels in the standard methods and concluded that the use of FAME in any amount is, thus, inappropriate. However, some of the standard methods are not updated for considering oxygenated components (like the method for obtaining the lower heating value), and others are not precise enough (like the methods for measuring the freezing point), whereas some alternative methods may provide better reproducibility for oxygenated fuels.
Resumo:
Three different oils: babassu, coconut and palm kernel have been transesterified with methanol. The fatty acid methyl esters (FAME) have been subjected to vacuum fractional distillation, and the low boiling point fractions have been blended with fossil kerosene at three different proportions: 5, 10 and 20% vol.
Resumo:
O crescente consumo de energia, bem como a possibilidade de esgotamento dos recursos não renováveis, tem fomentado a busca de fontes de energia alternativas. O biodiesel é um biocombustível obtido a partir de fontes renováveis e a sua utilização permite reduzir as emissões de gases com efeito de estufa. Nos últimos anos tem-se produzido biodiesel a partir de óleos alimentares usados (OAU), sendo que com esta aplicação valoriza-se um resíduo e simultaneamente produz-se um combustível “verde”. O biodiesel é produzido através das reações de transesterificação e/ou esterificação entre triglicerídeos e/ou ácidos gordos livres e um álcool, na presença de um catalisador. O rendimento do processo está estritamente relacionado com o tipo de catalisador e as condições que este opera. O principal objetivo do presente trabalho consistiu na avaliação do efeito de alguns parâmetros operacionais no desempenho de uma lípase imobilizada (Novozyme® 435), nomeadamente: (i) índice de acidez do óleo, (ii) razão mássica de enzima/óleo e (iii) método regeneração da enzima com vista à sua reutilização. Também foi objeto de estudo do presente trabalho a produção em contínuo, num (bior)reator tubular de leito fixo, de ésteres metílicos de ácidos gordos (FAME) usando a referida enzima. Registou-se um aumento rendimento em com o incremento do índice de acidez do óleo usado, o que indicia que a enzima catalisa simultaneamente as reações de esterificação e transesterificação. Relativamente à razão mássica de enzima/óleo, dentro da gama testada verificou-se um aumento do rendimento em FAME com a concentração da enzima em meio reacional. Dos vários solventes testados, a aplicação de solvente tert-butanol na regeneração (com incubação) da enzima foi o que melhores resultados teve. Finalmente, os resultados obtidos no ensaio de produção de FAME num biorreator contínuo são motivadores, criando expectativas de uma possível aplicação industrial no futuro.
Resumo:
This work describes the construction and testing of a simple pressurized solvent extraction (PSE) system. A mixture of acetone:water (80:20), 80 ºC and 103.5 bar, was used to extract two herbicides (Diuron and Bromacil) from a sample of polluted soil, followed by identification and quantification by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The system was also used to extract soybean oil (70 ºC and 69 bar) using pentane. The extracted oil was weighed and characterized through the fatty acid methyl ester analysis (myristic (< 0.3%), palmitic (16.3%), stearic (2.8%), oleic (24.5%), linoleic (46.3%), linolenic (9.6%), araquidic (0.3%), gadoleic (< 0.3%), and behenic (0.3%) acids) using high-resolution gas chromatography with flame ionization detection (HRGC-FID). PSE results were compared with those obtained using classical procedures: Soxhlet extraction for the soybean oil and solid-liquid extraction followed by solid-phase extraction (SLE-SPE) for the herbicides. The results showed: 21.25 ± 0.36% (m/m) of oil in the soybeans using the PSE system and 21.55 ± 0.65% (m/m) using the soxhlet extraction system; extraction efficiency (recovery) of herbicides Diuron and Bromacil of 88.7 ± 4.5% and 106.6 ± 8.1%, respectively, using the PSE system, and 96.8 ± 1.0% and 94.2 ± 3.9%, respectively, with the SLP-SPE system; limit of detection (LOD) and limit of quantification (LOQ) for Diuron of 0.012 mg kg-1 and 0.040 mg kg-1, respectively; LOD and LOQ for Bromacil of 0.025 mg kg-1 and 0.083 mg kg-1, respectively. The linearity used ranged from 0.04 to 1.50 mg L-1 for Diuron and from 0.08 to 1.50 mg L-1 for Bromacil. In conclusion, using the PSE system, due to high pressure and temperature, it is possible to make efficient, fast extractions with reduced solvent consumption in an inert atmosphere, which prevents sample and analyte decomposition.