944 resultados para Bilinear matrix inequalities (BMIs)
Resumo:
This work presents the application of Linear Matrix Inequalities to the robust and optimal adjustment of Power System Stabilizers with pre-defined structure. Results of some tests show that gain and zeros adjustments are sufficient to guarantee robust stability and performance with respect to various operating points. Making use of the flexible structure of LMI's, we propose an algorithm that minimizes the norm of the controllers gain matrix while it guarantees the damping factor specified for the closed loop system, always using a controller with flexible structure. The technique used here is the pole placement, whose objective is to place the poles of the closed loop system in a specific region of the complex plane. Results of tests with a nine-machine system are presented and discussed, in order to validate the algorithm proposed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We address robust stabilization problem for networked control systems with nonlinear uncertainties and packet losses by modelling such systems as a class of uncertain switched systems. Based on theories on switched Lyapunov functions, we derive the robustly stabilizing conditions for state feedback stabilization and design packet-loss dependent controllers by solving some matrix inequalities. A numerical example and some simulations are worked out to demonstrate the effectiveness of the proposed design method.
Resumo:
This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.
Resumo:
Since a celebrate linear minimum mean square (MMS) Kalman filter in integration GPS/INS system cannot guarantee the robustness performance, a H(infinity) filtering with respect to polytopic uncertainty is designed. The purpose of this paper is to give an illustration of this application and a contrast with traditional Kalman filter. A game theory H(infinity) filter is first reviewed; next we utilize linear matrix inequalities (LMI) approach to design the robust H(infinity) filter. For the special INS/GPS model, unstable model case is considered. We give an explanation for Kalman filter divergence under uncertain dynamic system and simultaneously investigate the relationship between H(infinity) filter and Kalman filter. A loosely coupled INS/GPS simulation system is given here to verify this application. Result shows that the robust H(infinity) filter has a better performance when system suffers uncertainty; also it is more robust compared to the conventional Kalman filter.
Resumo:
提出了一种新的模型直升机航向控制算法。针对具有模型不确定性的直升机航向线性模型,提出了一种具有自适应机制的最优保性能控制器。该控制策略通过引入自适应机制降低固定增益控制器所固有的保守性,并且控制器的反馈增益应用线性矩阵不等式(LMIs)方法解得。理论分析和数字仿真表明所设计的控制器具有良好的鲁棒稳定性能。
Resumo:
his paper investigates the identification and output tracking control of a class of Hammerstein systems through a wireless network within an integrated framework and the statistic characteristics of the wireless network are modelled using the inverse Gaussian cumulative distribution function. In the proposed framework, a new networked identification algorithm is proposed to compensate for the influence of the wireless network delays so as to acquire the more precise Hammerstein system model. Then, the identified model together with the model-based approach is used to design an output tracking controller. Mean square stability conditions are given using linear matrix inequalities (LMIs) and the optimal controller gains can be obtained by solving the corresponding optimization problem expressed using LMIs. Illustrative numerical simulation examples are given to demonstrate the effectiveness of our proposed method.
Resumo:
In this paper, we address this problem through the design of a semiactive controller based on the mixed H2/H∞ control theory. The vibrations caused by the seismic motions are mitigated by a semiactive damper installed in the bottom of the structure. It is meant by semiactive damper, a device that absorbs but cannot inject energy into the system. Sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller that guarantees asymptotic stability and a mixed H2/H∞ performance is then developed. An algorithm is proposed to handle the semiactive nature of the actuator. The performance of the controller is experimentally evaluated in a real-time hybrid testing facility that consists of a physical specimen (a small-scale magnetorheological damper) and a numerical model (a large-scale three-story building)
Resumo:
The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method
Resumo:
Controllers for feedback substitution schemes demonstrate a trade-off between noise power gain and normalized response time. Using as an example the design of a controller for a radiometric transduction process subjected to arbitrary noise power gain and robustness constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain design objectives can be derived. In this work, we consider designs using a loop shaping design procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives and a genetic algorithm (GA) to perform a multi-objective optimization for the controller weights (MOGA). A clonal selection algorithm is used to further provide a directed search of the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is possible to design higher order controllers with superior performance in terms of response time, noise power gain and robustness.
Resumo:
A presente dissertação tem como objetivo estudar e aprimorar métodos de projetos de controladores para sistemas de potência, sendo que esse trabalho trata da estabilidade dinâmica de sistemas de potência e, portanto, do projeto de controladores amortecedores de oscilações eletromecânicas para esses sistemas. A escolha dos métodos aqui estudados foi orientada pelos requisitos que um estabilizador de sistemas de potência (ESP) deve ter, que são robustez, descentralização e coordenação. Sendo que alguns deles tiveram suas características aprimoradas para atender a esses requisitos. A abordagem dos métodos estudados foi restringida à análise no domínio tempo, pois a abordagem temporal facilita a modelagem das incertezas paramétricas, para atender ao requisito da robustez, e também permite a formulação do controle descentralizado de maneira simples. Além disso, a abordagem temporal permite a formulação do problema de projeto utilizando desigualdades matriciais lineares (LMI’s), as quais possuem como vantagem o fato do conjunto solução ser sempre convexo e a existência de algoritmos eficientes para o cálculo de sua solução. De fato, existem diversos pacotes computacionais desenvolvidos no mercado para o cálculo da solução de um problema de inequações matriciais lineares. Por esse motivo, os métodos de projeto para controladores de saída buscam sempre colocar o problema na forma de LMI’s, tendo em vista que ela garante a obtenção de solução, caso essa solução exista.
Resumo:
This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol
Resumo:
Relaxed conditions for stability of nonlinear continuous-time systems given by fuzzy models axe presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. This result is also used for fuzzy regulators design. The nonlinear systems are represented by fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers axe described by LMIs (Linear Matrix Inequalities), that can be solved efficiently using convex programming techniques.
Resumo:
Relaxed conditions for stability of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed methods provide better or at least the same results of the methods presented in the literature. Numerical results exemplify this fact. These results are also used for fuzzy regulators and observers designs. The nonlinear systems are represented by fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by linear matrix inequalities, that can be solved efficiently using convex programming techniques. The specification of the decay rate, constrains on control input and output are also discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)