888 resultados para Bessel functions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of a circular elastic inclusion in a cylindrical shell subjected to internal pressure or thermal loading is studied. The two shallow-shell equations governing the behaviour of a cylindrical shell are transformed into a single differential equation involving a curvature parameter and a complex potential function in a non-dimensional form. In the shell region, the solution is represented by Hankel functions of first kind, whereas in the inclusion region it is represented by Bessel functions of first kind. Boundary conditions at the shell-inclusion junction are expressed in a simple form involving in-plane strains and change in curvature. The effect of such inclusion parameters as extensional rigidity, bending rigidity, and thermal expansion coefficients on the stress concentrations has been determined. The results are presented in non-dimensional form for ready use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transmission loss (TL) performance of spherical chambers having single inlet and multiple outlet is obtained analytically through modal expansion of acoustic field inside the spherical cavity in terms of the spherical Bessel functions and Legendre polynomials. The uniform piston driven model based upon the impedance [Z] matrix is used to characterize the multi-port spherical chamber. It is shown analytically that the [Z] parameters are independent of the azimuthal angle (phi) due to the axisymmetric shape of the sphere; rather, they depend only upon the polar angle (theta) and radius of the chamber R(0). Thus, the effects of relative polar angular location of the ports and number of outlet ports are investigated. The analytical results are shown to be in good agreement with the 3D FEA results, thereby validating the procedure suggested in this work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study thermodynamics of an ideal gas in doubly special relativity. A new type of special functions (which we call ``incomplete modified Bessel functions'') emerge. We obtain a series solution for the partition function and derive thermodynamic quantities. We observe that doubly special relativity thermodynamics is nonperturbative in the special relativity and massless limits. A stiffer equation of state is found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We apply a scattering theory of nonperturbative quantum electrodynamics to study the photoelectron angular distributions (PADs) of a hydrogen atom irradiated by linearly polarized laser light. The calculated PADs show main lobes and jetlike structure. Previous experimental studies reveal that in a set of above-threshold-ionization peaks when the absorbed-photon number increases by one, the jet number also increases by one. Our study confirms this experimental observation. Our calculations further predict that in some cases three more jets may appear with just one-more-photon absorption. With consideration of laser-frequency change, one less jet may also appear with one-more-photon absorption. The jetlike structure of PADs is due to the maxima of generalized phased Bessel functions, not an indication of the quantum number of photoelectron angular momentum states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recently observed anomaly in photoelectron angular distributions (PADs), the disappearance of the main lobes of PADs which should be usually in the direction of laser polarization, is reinterpreted as a minimum of generalized Bessel functions in the laser-polarization direction with the theory of nonperturbative quantum electrodynamics. The reinterpretation has no artificial fitting parameters and explains more features of the experimentally observed PADs, in contrast to the existing interpretation in which the anomaly is interpreted as a quantum interference of angular momentum partial waves. Some hierarchy anomalies are predicted for further experimental observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hole Rashba effect and g-factor in InP nanowires in the presence of electric and magnetic fields which bring spin splitting are investigated theoretically in the framework of eight-band effective-mass envelop function theory, by expanding the lateral wave function in Bessel functions. It is well known that the electron Rashba coefficient increases nearly linearly with the electric field. As the Rashba spin splitting is zero at zero k(z) ( the wave vector along the wire direction), the electron g-factor at k(z) = 0 changes little with the electric field. While we find that as the electric field increases, the hole Rashba coefficient increases at first, then decreases. It is noticed that the hole Rashba coefficient is zero at a critical electric field. The hole g-factor at k(z) = 0 changes obviously with the electric field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a non-standard application of the Wannier model. A physical example is the single ionization of a hydrogenic beryllium ion with a fully stripped beryllium ion, where the ratio of the charge of the third particle to the charges of the escaping particles is 1/4; we investigate the single ionization by an electron of an atom comprising an electron and a nucleus of charge 1/4. An infinite exponent is obtained suggesting that this process is not tractable within the Wannier model. A modified version of Crothers' uniform semiclassical wavefunction for the outgoing particles has been adopted, since the Wannier exponents and are infinite for an effective charge of Z = 1/4. We use Bessel functions to describe the Peterkop functions u and u and derive a new turning point ?. Since u is well behaved at infinity, there exists only the singularity in u at infinity, thus we employ a one- (rather than two-) dimensional change of dependent variable, ensuring that a uniform solution is obtained that avoids semiclassical breakdown on the Wannier ridge. The regularized final-state asymptotic wavefunction is employed, along with a continuum-distorted-wave approximation for the initial-state wavefunction to obtain total cross sections on an absolute scale. © 2006 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce mémoire a pour but d'étudier les propriétés des solutions à l'équation aux valeurs propres de l'opérateur de Laplace sur le disque lorsque les valeurs propres tendent vers l'in ni. En particulier, on s'intéresse au taux de croissance des normes ponctuelle et L1. Soit D le disque unitaire et @D sa frontière (le cercle unitaire). On s'inté- resse aux solutions de l'équation aux valeurs propres f = f avec soit des conditions frontières de Dirichlet (fj@D = 0), soit des conditions frontières de Neumann ( @f @nj@D = 0 ; notons que sur le disque, la dérivée normale est simplement la dérivée par rapport à la variable radiale : @ @n = @ @r ). Les fonctions propres correspondantes sont données par : f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet) fN (r; ) = fN n;m(r; ) = Jn(k0 n;mr)(Acos(n ) + B sin(n )) (Neumann) où Jn est la fonction de Bessel de premier type d'ordre n, kn;m est son m- ième zéro et k0 n;m est le m-ième zéro de sa dérivée (ici on dénote les fonctions propres pour le problème de Dirichlet par f et celles pour le problème de Neumann par fN). Dans ce cas, on obtient que le spectre SpD( ) du laplacien sur D, c'est-à-dire l'ensemble de ses valeurs propres, est donné par : SpD( ) = f : f = fg = fk2 n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet) SpN D( ) = f : fN = fNg = fk0 n;m 2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann) En n, on impose que nos fonctions propres soient normalisées par rapport à la norme L2 sur D, c'est-à-dire : R D F2 da = 1 (à partir de maintenant on utilise F pour noter les fonctions propres normalisées et f pour les fonctions propres quelconques). Sous ces conditions, on s'intéresse à déterminer le taux de croissance de la norme L1 des fonctions propres normalisées, notée jjF jj1, selon . Il est vi important de mentionner que la norme L1 d'une fonction sur un domaine correspond au maximum de sa valeur absolue sur le domaine. Notons que dépend de deux paramètres, m et n et que la dépendance entre et la norme L1 dépendra du rapport entre leurs taux de croissance. L'étude du comportement de la norme L1 est étroitement liée à l'étude de l'ensemble E(D) qui est l'ensemble des points d'accumulation de log(jjF jj1)= log : Notre principal résultat sera de montrer que [7=36; 1=4] E(B2) [1=18; 1=4]: Le mémoire est organisé comme suit. L'introdution et les résultats principaux sont présentés au chapitre 1. Au chapitre 2, on rappelle quelques faits biens connus concernant les fonctions propres du laplacien sur le disque et sur les fonctions de Bessel. Au chapitre 3, on prouve des résultats concernant la croissance de la norme ponctuelle des fonctions propres. On montre notamment que, si m=n ! 0, alors pour tout point donné (r; ) du disque, la valeur de F (r; ) décroit exponentiellement lorsque ! 1. Au chapitre 4, on montre plusieurs résultats sur la croissance de la norme L1. Le probl ème avec conditions frontières de Neumann est discuté au chapitre 5 et on présente quelques résultats numériques au chapitre 6. Une brève discussion et un sommaire de notre travail se trouve au chapitre 7.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lecture notes in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lecture notes in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper it is shown that a number of theoretical models of the acoustical properties of rigid frame porous media, especially those involving ratios of Bessel functions of complex argument, can be accurately approximated and greatly simplified by the use of Padé approximation techniques. In the case of the model of Attenborough [J. Acoust. Soc. Am. 81, 93–102 (1987)] rational approximations are produced for the characteristic impedance, propagation constant, dynamic compressibility, and dynamic density, as a function of frequency and the material parameters. The model proposed by Stinson and Champoux

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Birnbaum and Saunders (1969a) introduced a probability distribution which is commonly used in reliability studies For the first time based on this distribution the so-called beta-Birnbaum-Saunders distribution is proposed for fatigue life modeling Various properties of the new model including expansions for the moments moment generating function mean deviations density function of the order statistics and their moments are derived We discuss maximum likelihood estimation of the model s parameters The superiority of the new model is illustrated by means of three failure real data sets (C) 2010 Elsevier B V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this paper is to show an alternative methodology to calculate transmission line parameters per unit length. With this methodology the transmission line parameters can be obtained starting from the phase currents and voltages in one terminal of the line. First, the article shows the classical methodology to calculate frequency dependent transmission line parameters by using Carson's and Pollaczeck's equations for representing the ground effect and Bessel's functions to represent the skin effect. After that, it is shown a new procedure to calculate frequency dependent transmission line parameters directly from currents and voltages of the line that is already built. Then, this procedure is applied in a two-phase transmission line whose parameters have been previously calculated by using the classical methodology. Finally, the results obtained by using the new procedure and by using the classical methodology are compared. ©2005 IEEE.