Definite integrals and operational methods


Autoria(s): Babusci, D.; Dattoli, G.; Duchamp, G. H. E.; Gorska, K.; Penson, K. A.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

02/10/2013

02/10/2013

2012

Resumo

An operational method, already employed to formulate a generalization of the Ramanujan master theorem, is applied to the evaluation of integrals of various types. This technique provides a very flexible and powerful tool yielding new results encompassing different aspects of the special function theory. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, Brazil) [2010/15698-5]

Agence Nationale de la Recherche (Paris, France) under Program PHYSCOMB

Agence Nationale de la Recherche (Paris, France) under Program PHYSCOMB [ANR-08-BLAN-243-2]

Identificador

APPLIED MATHEMATICS AND COMPUTATION, v. 219, n. 6, pp. 3017-3021, 45962, 2012

0096-3003

http://www.producao.usp.br/handle/BDPI/33934

10.1016/j.amc.2012.09.029

http://dx.doi.org/10.1016/j.amc.2012.09.029

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE INC

NEW YORK

Relação

APPLIED MATHEMATICS AND COMPUTATION

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE INC

Palavras-Chave #INTEGRALS #RAMANUJAN'S MASTER THEOREM #BESSEL FUNCTIONS #STRUVE FUNCTIONS #HERMITE POLYNOMIALS #POLYNOMIALS #MATHEMATICS, APPLIED
Tipo

article

original article

publishedVersion