996 resultados para BIOMASS PYROLYSIS LIQUID


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioenergy is now accepted as having the potential to provide the major part of the projected renewable energy provisions of the future as biofuels in the form of gas, liquid or solid fuels or electricity and heat. There are three main routes to providing these biofuels — thermal conversion, biological conversion and physical conversion — all of which employ a range of chemical reactor configurations and process designs. This paper focuses on fast pyrolysis from which the liquid, often referred to as bio-oil, can be used on-site or stored or transported to centralised and/or remote user facilities for utilisation for example as a fuel, or further processing to biofuels and/or chemicals. This offers the potential for system optimisation, much greater economies of scale and exploitation of the concepts of biorefineries. The technology of fast pyrolysis is described, particularly the reactors that have been developed to provide the necessary conditions to optimise performance. The primary liquid product is characterised, as well as the secondary products of electricity and/or heat, liquid fuels and a considerable number of chemicals. The main technical and non-technical barriers to the market deployment of the various technologies are identified and briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are reasons of necessity in bio-fuel use and bio-energy fast development. It includes the material about bio-energy technologies, applications and methods. There are basic thermodynamics and economic theories. The economic calculation presents the comparison between two combinations. There are boiler plant below 20 MW in combination with ablative pyrolysis plant for bio-oil production and CHP plant below 100 MW in combination with the RTP pyrolysis bio-oil production technology. It provides a material about wood chips and bio-oil characteristics and explains it nature, presents the situation around the bio-fuel market or bio-fuel trade. There is a description of pyrolysis technologies such as ablative and RTP. The liquid product of the pyrolysis processes is bio-oil. The bio-oil could be different even of the same production process, because of the raw material nature and characteristics. The calculation shows advantages and weaknesses of combinations and obtained a proof of suppositions. The next thing, proven by this work is the fact that to get more efficiency from energy project it is good possibility to built plants in combinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrolysis is a process for turning biomass into liquid fuel. The process consists of heating the biomass in inert conditions and quenching the resulting vapors into oil. The oil has many potential uses, such as heating fuel in peak heating plants. In order to broaden the application base and improve the quality of the oil, solids removal has to be addressed. The solids may also increase the probability of plugging in downstream equipment. The purpose of this research was to gain an understanding of the formation of solids in the pyrolysis process and to assess options for reducing the solid content of the oil. From literature it is known that the solids can be removed either by hot vapor filtration, liquid treatment or multiple cyclones. Hot vapor filtration decreases yield, but improves the stability of the oil while simultaneously removing solids and ash. Liquid treatment techniques are good for removing large particles but involve losses of pyrolysis liquid. Cyclones are a traditional robust technique used regularly in pyrolysis. In the experimental part of this thesis, a 2 MWfuel pyrolysis setup with 2 cyclones in series was operated and monitored. Solid and liquid samples were collected from various parts of the process for further examination. Sampling and sample treatment techniques were developed. The chemical properties of the pyrolysis char were also analyzed and assessed as a function of reactor temperature and fluidizing velocity. By measuring the particle size distributions it was noticed that there were much smaller particles collected from the second cyclone than fed into pyrolysis. The solids in the pyrolysis oil were even smaller. This was most likely caused by attrition and shrinkage. Due to better separation efficiency of the cyclones in large particles, excess attrition should be avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquids, ILs, have recently been studied with accelerating interest to be used for a deconstruction/fractionation, dissolution or pretreatment processing method of lignocellulosic biomass. ILs are usually utilized combined with heat. Regarding lignocellulosic recalcitrance toward fractionation and IL utilization, most of the studies concern IL utilization in the biomass fermentation process prior to the enzymatic hydrolysis step. It has been demonstrated that IL-pretreatment gives more efficient hydrolysis of the biomass polysaccharides than enzymatic hydrolysis alone. Both cellulose (especially cellulose) and lignin are very resistant towards fractionation and even dissolution methods. As an example, it can be mentioned that softwood, hardwood and grass-type plant species have different types of lignin structures leading to the fact that softwood lignin (guaiacyl lignin dominates) is the most difficult to solubilize or chemically disrupt. In addition to the known conventional biomass processing methods, several ILs have also been found to efficiently dissolve either cellulose and/or wood samples – different ILs are suitable for different purposes. An IL treatment of wood usually results in non-fibrous pulp, where lignin is not efficiently separated and wood components are selectively precipitated, as cellulose is not soluble or degradable in ionic liquids under mild conditions. Nevertheless, new ILs capable of rather good fractionation performance have recently emerged. The capability of the IL to dissolve or deconstruct wood or cellulose depends on several factors, (e.g. sample origin, the particle size of the biomass, mechanical treatments as pulverization, initial biomassto-IL ratio, water content of the biomass, possible impurities of IL, reaction conditions, temperature etc). The aim of this study was to obtain (fermentable) saccharides and other valuable chemicals from wood by a combined heat and IL-treatment. Thermal treatments alone contribute to the degradation of polysaccharides (e.g. 150 °C alone is said to cause the degradation of polysaccharides), thus temperatures below that should be used, if the research interest lies on the IL effectiveness. On the other hand, the efficiency of the IL-treatment can also be enhanced to combine other treatment methods, (e.g. microwave heating). The samples of spruce, pine and birch sawdust were treated with either 1-Ethyl-3-methylimidazolium chloride, Emim Cl, or 1-Ethyl-3-methylimidazolium acetate, Emim Ac, (or with ionized water for comparison) at various temperatures (where focus was between 80 and 120 °C). The samples were withdrawn at fixed time intervals (the main interest treatment time area lied between 0 and 100 hours). Double experiments were executed. The selected mono- and disaccharides, as well as their known degradation products, 5-hydroxymethylfurfural, 5-HMF, and furfural were analyzed with capillary electrophoresis, CE, and high-performance liquid chromatography, HPLC. Initially, even GC and GC-MS were utilized. Galactose, glucose, mannose and xylose were the main monosaccharides that were present in the wood samples exposed to ILs at elevated temperatures; in addition, furfural and 5-HMF were detected; moreover, the quantitative amount of the two latter ones were naturally increasing in line with the heating time or the IL:wood ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrolysis is one of several thermochemical technologies that convert solid biomass into more useful and valuable bio-fuels. Pyrolysis is thermal degradation in the complete or partial absence of oxygen. Under carefully controlled conditions, solid biomass can be converted to a liquid known as bie-oil in 75% yield on dry feed. Bio-oil can be used as a fuel but has the drawback of having a high level of oxygen due to the presence of a complex mixture of molecular fragments of cellulose, hemicellulose and lignin polymers. Also, bio-oil has a number of problems in use including high initial viscosity, instability resulting in increased viscosity or phase separation and high solids content. Much effort has been spent on upgrading bio-oil into a more usable liquid fuel, either by modifying the liquid or by major chemical and catalytic conversion to hydrocarbons. The overall primary objective was to improve oil stability by exploring different ways. The first was to detennine the effect of feed moisture content on bio-oil stability. The second method was to try to improve bio-oil stability by partially oxygenated pyrolysis. The third one was to improve stability by co-pyrolysis with methanol. The project was carried out on an existing laboratory pyrolysis reactor system, which works well with this project without redesign or modification too much. During the finishing stages of this project, it was found that the temperature of the condenser in the product collection system had a marked impact on pyrolysis liquid stability. This was discussed in this work and further recommendation given. The quantity of water coming from the feedstock and the pyrolysis reaction is important to liquid stability. In the present work the feedstock moisture content was varied and pyrolysis experiments were carried out over a range of temperatures. The quality of the bio-oil produced was measured as water content, initial viscosity and stability. The result showed that moderate (7.3-12.8 % moisture) feedstock moisture led to more stable bio-oil. One of drawbacks of bio-oil was its instability due to containing unstable oxygenated chemicals. Catalytic hydrotreatment of the oil and zeolite cracking of pyrolysis vapour were discllssed by many researchers, the processes were intended to eliminate oxygen in the bio-oil. In this work an alternative way oxygenated pyrolysis was introduced in order to reduce oil instability, which was intended to oxidise unstable oxygenated chemicals in the bio-oil. The results showed that liquid stability was improved by oxygen addition during the pyrolysis of beech wood at an optimum air factor of about 0.09-0.15. Methanol as a postproduction additive to bio-oil has been studied by many researchers and the most effective result came from adding methanol to oil just after production. Co-pyrolysis of spruce wood with methanol was undertaken in the present work and it was found that methanol improved liquid stability as a co-pyrolysis solvent but was no more effective than when used as a postproduction additive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a comparison of integrated biomass to electricity systems on the basis of their efficiency, capital cost and electricity production cost. Four systems are evaluated: combustion to raise steam for a steam cycle; atmospheric gasification to produce fuel gas for a dual fuel diesel engine; pressurised gasification to produce fuel gas for a gas turbine combined cycle; and fast pyrolysis to produce pyrolysis liquid for a dual fuel diesel engine. The feedstock in all cases is wood in chipped form. This is the first time that all three thermochemical conversion technologies have been compared in a single, consistent evaluation.The systems have been modelled from the transportation of the wood chips through pretreatment, thermochemical conversion and electricity generation. Equipment requirements during pretreatment are comprehensively modelled and include reception, storage, drying and communication. The de-coupling of the fast pyrolysis system is examined, where the fast pyrolysis and engine stages are carried out at separate locations. Relationships are also included to allow learning effects to be studied. The modelling is achieved through the use of multiple spreadsheets where each spreadsheet models part of the system in isolation and the spreadsheets are combined to give the cost and performance of a whole system.The use of the models has shown that on current costs the combustion system remains the most cost-effective generating route, despite its low efficiency. The novel systems only produce lower cost electricity if learning effects are included, implying that some sort of subsidy will be required during the early development of the gasification and fast pyrolysis systems to make them competitive with the established combustion approach. The use of decoupling in fast pyrolysis systems is a useful way of reducing system costs if electricity is required at several sites because• a single pyrolysis site can be used to supply all the generators, offering economies of scale at the conversion step. Overall, costs are much higher than conventional electricity generating costs for fossil fuels, due mainly to the small scales used. Biomass to electricity opportunities remain restricted to niche markets where electricity prices are high or feed costs are very low. It is highly recommended that further work examines possibilities for combined beat and power which is suitable for small scale systems and could increase revenues that could reduce electricity prices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquids and gases produced through biomass pyrolysis have potential as renewable fuels to replace fossil fuels in conventional internal combustion engines. This review compares the properties of pyrolysis fuels, produced from a variety of feedstocks and using different pyrolysis techniques, against those of fossil fuels. High acidity, the presence of solid particles, high water content, high viscosity, storage and thermal instability, and low energy content are typical characteristics of pyrolysis liquids. A survey of combustion, performance and exhaust emission results from the use of pyrolysis liquids (both crude and up-graded) in compression ignition engines is presented. With only a few exceptions, most authors have reported difficulties associated with the adverse properties of pyrolysis liquids, including: corrosion and clogging of the injectors, long ignition delay and short combustion duration, difficulty in engine start-up, unstable operation, coking of the piston and cylinders and subsequent engine seizure. Pyrolysis gas can be used more readily, either in spark ignition or compression ignition engines; however, NO reduction techniques are desirable. Various approaches to improve the properties of pyrolysis liquids are discussed and a comparison of the properties of up-graded vs. crude pyrolysis liquid is included. Further developments in up-gradation techniques, such as hydrocracking and bio-refinery approaches, could lead to the production of green diesel and green gasoline. Modifications required to engines for use with pyrolysis liquids, for example in the fuel supply and injection systems, are discussed. Storage stability and economic issues are also reviewed. Our study presents recent progress and important R&D areas for successful future use of pyrolysis fuels in internal combustion engines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of technological routes to convert lignocellulosic biomass to liquid fuels requires an in-depth understanding of the cell wall architecture of substrates. Essential pretreatment processes are conducted to reduce biomass recalcitrance and usually increase the reactive surface area. Quantitative three-dimensional information about both bulk and surface structural features of substrates needs to be obtained to expand our knowledge of substrates. In this work, phase-contrast tomography (PCT) was used to gather information about the structure of a model lignocellulosic biomass (piassava fibers). The three-dimensional cellular organization of piassava fibers was characterized by PCT using synchrotron radiation. This technique enabled important physical features that describe the substrate piassava fibers to be visualized and quantified. The external surface area of a fiber and internal surface area of the pores in a fiber could be determined separately. More than 96% of the overall surface area available to enzymes was in the bulk substrate. The pore surface area and length exhibited a positive linear relationship, where the slope of this relationship depended on the plant tissue. We demonstrated that PCT is a powerful tool for the three-dimensional characterization of the cell wall features related to biomass recalcitrance. Original and relevant quantitative information about the structural features of the analyzed material were obtained. The data obtained by PCT can be used to improve processing routes to efficiently convert biomass feedstock into sugars.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction of second-generation biofuels is an essential factor for meeting the EU’s 2020 targets for renewable energy in the transport sector and enabling the more ambitious targets for 2030. Finland’s forest industry is strongly involved in the development and commercialising of second-generation biofuel production technologies. The goal of this paper is to provide a quantified insight into Finnish prospects for reaching the 2020 national renewable energy targets and concurrently becoming a large-scale producer of forest biomass based second-generation biofuels feeding the increasing demand in European markets. The focus of the paper is on assessing the potential for utilising forest biomass for liquid biofuels up to 2020. In addition, technological issues related to the production of second-generation biofuels were reviewed. Finland has good opportunities to realise a scenario to meet 2020 renewable energy targets and for large-scale production of wood based biofuels. In 2020, biofuel production from domestic forest biomass in Finland may reach nearly a million ton (40 PJ). With the existing biofuel production capacity (20 PJ/yr) and national biofuel consumption target (25 PJ) taken into account, the potential net export of biofuels from Finland in 2020 would be 35 PJ, corresponding to 2–3% of European demand. Commercialisation of second-generation biofuel production technologies, high utilisation of the sustainable harvesting potential of Finnish forest biomass, and allocation of a significant proportion of the pulpwood harvesting potential for energy purposes are prerequisites for this scenario. Large-scale import of raw biomass would enable remarkably greater biofuel production than is described in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main goal of this work is to clarify the idea of two thermochemical conversion processes of biomass - pyrolysis and torrefaction and to identify possible ways how and where exactly these processes can be integrated. Integration into CHP power plant process was chosen as one of the most promising ways. Multiple product development was determined by means of this integration concept. The analysis of the possible pros and cons was made based on some experimental data collected from the previous studies related to the topic of my work. In addition, one real integrated case was represented in the last part of the work. Finally, to highlight the main idea brief summarizing was done.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Torrefaction is moderate thermal treatment (~200-300 °C) of biomass in an inert atmosphere. The torrefied fuel offers advantages to traditional biomass, such as higher heating value, reduced hydrophilic nature, increased its resistance to biological decay, and improved grindability. These factors could, for instance, lead to better handling and storage of biomass and increased use of biomass in pulverized combustors. In this work, we look at several aspects of changes in the biomass during torrefaction. We investigate the fate of carboxylic groups during torrefaction and its dependency to equilibrium moisture content. The changes in the wood components including carbohydrates, lignin, extractable materials and ashforming matters are also studied. And at last, the effect of K on torrefaction is investigated and then modeled. In biomass, carboxylic sites are partially responsible for its hydrophilic characteristic. These sites are degraded to varying extents during torrefaction. In this work, methylene blue sorption and potentiometric titration were applied to measure the concentration of carboxylic groups in torrefied spruce wood. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic group contents. Thus, both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction. This provides new information to the chemical changes occurring during torrefaction. The effect of torrefaction temperature on the chemistry of birch wood was investigated. The samples were from a pilot plant at Energy research Center of the Netherlands (ECN). And in that way they were representative of industrially produced samples. Sugar analysis was applied to analyze the hemicellulose and cellulose content during torrefaction. The results show a significant degradation of hemicellulose already at 240 °C, while cellulose degradation becomes significant above 270 °C torrefaction. Several methods including Klason lignin method, solid state NMR and Py-GC-MS analyses were applied to measure the changes in lignin during torrefaction. The changes in the ratio of phenyl, guaiacyl and syringyl units show that lignin degrades already at 240 °C to a small extent. To investigate the changes in the extractives from acetone extraction during torrefaction, gravimetric method, HP-SEC and GC-FID followed by GC-MS analysis were performed. The content of acetone-extractable material increases already at 240 °C torrefaction through the degradation of carbohydrate and lignin. The molecular weight of the acetone-extractable material decreases with increasing the torrefaction temperature. The formation of some valuable materials like syringaresinol or vanillin is also observed which is important from biorefinery perspective. To investigate the change in the chemical association of ash-forming elements in birch wood during torrefaction, chemical fractionation was performed on the original and torrefied birch samples. These results give a first understanding of the changes in the association of ashforming elements during torrefaction. The most significant changes can be seen in the distribution of calcium, magnesium and manganese, with some change in water solubility seen in potassium. These changes may in part be due to the destruction of carboxylic groups. In addition to some changes in water and acid solubility of phosphorous, a clear decrease in the concentration of both chlorine and sulfur was observed. This would be a significant additional benefit for the combustion of torrefied biomass. Another objective of this work is studying the impact of organically bound K, Na, Ca and Mn on mass loss of biomass during torrefaction. These elements were of interest because they have been shown to be catalytically active in solid fuels during pyrolysis and/or gasification. The biomasses were first acid washed to remove the ash-forming matters and then organic sites were doped with K, Na, Ca or Mn. The results show that K and Na bound to organic sites can significantly increase the mass loss during torrefaction. It is also seen that Mn bound to organic sites increases the mass loss and Ca addition does not influence the mass loss rate on torrefaction. This increase in mass loss during torrefaction with alkali addition is unlike what has been found in the case of pyrolysis where alkali addition resulted in a reduced mass loss. These results are important for the future operation of torrefaction plants, which will likely be designed to handle various biomasses with significantly different contents of K. The results imply that shorter retention times are possible for high K-containing biomasses. The mass loss of spruce wood with different content of K was modeled using a two-step reaction model based on four kinetic rate constants. The results show that it is possible to model the mass loss of spruce wood doped with different levels of K using the same activation energies but different pre-exponential factors for the rate constants. Three of the pre-exponential factors increased linearly with increasing K content, while one of the preexponential factors decreased with increasing K content. Therefore, a new torrefaction model was formulated using the hemicellulose and cellulose content and K content. The new torrefaction model was validated against the mass loss during the torrefaction of aspen, miscanthus, straw and bark. There is good agreement between the model and the experimental data for the other biomasses, except bark. For bark, the mass loss of acetone extractable material is also needed to be taken into account. The new model can describe the kinetics of mass loss during torrefaction of different types of biomass. This is important for considering fuel flexibility in torrefaction plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cellulose is the major constituent of most plants of interest as renewable sources of energy and is the most extensively studied form of biomass or biomass constituent. Predicting the mass loss and product yields when cellulose is subjected to increased temperature represents a fundamental problem in the thermal release of biomass energy. Unfortunately, at this time, there is no internally consistent model of cellulose pyrolysis that can organize the varied experimental data now available or provide a guide for additional experiments. Here, we present a model of direct cellulose pyrolysis using a multistage decay scheme that we first presented in the IJQC in 1984. This decay scheme can, with the help of an inverse method of assigning reaction rates, provide a reasonable account of the direct fast pyrolysis yield measurements. The model is suggestive of dissociation states of d-glucose (C6H10O5,), the fundamental cellulose monomer. The model raises the question as to whether quantum chemistry could now provide the dissociation energies for the principal breakup modes of glucose into C-1, C-2, C-3, C-4, and C-5 compounds. These calculations would help in achieving a more fundamental description of volatile generation from cellulose pyrolysis and could serve as a guide for treating hemicellulose and lignin, the other major biomass constituents. Such advances could lead to the development of a predictive science of biomass pyrolysis that would facilitate the design of liquifiers and gasifiers based upon renewable feedstocks. (C) 1998 John Wiley & Sons, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents experimental information relevant to the combustion of biomass in a bubbling fluidized bed. The biomass distribution in a fluidized bed was studied through tests performed in a cold bed, while the volatiles released in the biomass pyrolysis, the burning rate of the resulting charcoal, and the combustion control regime, were studied through tests performed in a high temperature bed.Visual examination of photographs taken from a transparent walls bed, with a rectangular cross-section, showed that the large fuel particles, typical of biomass processing, were distributed in the bubbles, in the splash zone, and in the emulsion phase. The occurrence of biomass in the emulsion phase was favored by burning biomass particles of greater density and smaller size-expetimentally determined in each case. Decreasing the fuel particle size improved the biomass distribution inside the bed. The same was accomplished by increasing the superficial gas velocity as high as possible, compatibly with the acceptable elutriation.Burning tests showed that the biomass fuels have the advantage of reaching the diffusional regime at temperatures that can be lower than 1000 K, which ensures that the biomass fuels burn in a stable regime. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work investigated the effects of temperature and of rate of heating on the kinetic parameters of pyrolysis of castor beans presscake, a byproduct generated in the biodiesel production process. Pyrolysis process was investigated by thermogravimetric analysis, and parameters were obtained from nonisothermal experiments. The results obtained from the process of thermal decomposition indicated the elimination of humidity and the decomposition of organic components of the biomass. DTG curves showed that the heating rate affects the temperature of maximum decomposition of the material. Kinetic parameters such as activation energy and pre-exponential factor were obtained by model-free methods proposed by Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Kissinger. Experimental results showed that the kinetic parameters values of the FWO and KAS methods display good agreement and can be used to understand the mechanism of degradation of the cake. In a generalized way, the results contribute to better understanding of the processes of biomass pyrolysis.