68 resultados para BAREFOOT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous research has suggested that perceptual-motor difficulties may account for obese children's lower motor competence; however, specific evidence is currently lacking. Therefore, this study examined the effect of altered visual conditions on spatiotemporal and kinematic gait parameters in obese versus normal-weight children. Thirty-two obese and normal-weight children (11.2 ± 1.5 years) walked barefoot on an instrumented walkway at constant self-selected speed during LIGHT and DARK conditions. Three-dimensional motion analysis was performed to calculate spatiotemporal parameters, as well as sagittal trunk segment and lower extremity joint angles at heel-strike and toe-off. Self-selected speed did not significantly differ between groups. In the DARK condition, all participants walked at a significantly slower speed, decreased stride length, and increased stride width. Without normal vision, obese children had a more pronounced increase in relative double support time compared to the normal-weight group, resulting in a significantly greater percentage of the gait cycle spent in stance. Walking in the DARK, both groups showed greater forward tilt of the trunk and restricted hip movement. All participants had increased knee flexion at heel-strike, as well as decreased knee extension and ankle plantarflexion at toe-off in the DARK condition. The removal of normal vision affected obese children's temporal gait pattern to a larger extent than that of normal-weight peers. Results suggest an increased dependency on vision in obese children to control locomotion. Next to the mechanical problem of moving excess mass, a different coupling between perception and action appears to be governing obese children's motor coordination and control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Generation Workshop Program 2010, a part of the Queensland Government Unlimited: Designing for the Asia Pacific Event Program, consisted of two one-day intensive design thinking workshops run on October 7-8, 2011 at The Edge, State Library of Queensland, for 100 senior secondary students and 20 secondary teachers self-selected from the subject areas of Visual Art, Graphics and Industrial Technology and Design. Participants were drawn from a database of Brisbane and regional Queensland private and public schools from the goDesign and Living City Workshop Programs. The workshop aimed to facilitate awareness in young people of the role of design in society and the value of design thinking skills in solving complex problems facing the Asia Pacific Region, and to inspire the generation of strategies for our future cities. It also aimed to encourage the collaboration of professional designers with secondary schools to inspire post-secondary pathways and idea generation for education. Inspired by international and national speakers Bunker Roy (Barefoot College) and Hael Kobayashi (Associate Producer on "Happy Feet" film for Australia's Animal Logic), the Unlimited showcase exhibition Make Change: Design Thinking in Action and ‘Idea Starters’/teaching resources provided, students worked with a teacher in ten random teams, to generate optimistic strategies for the Ideal City of tomorrow, each considering a theme – Food, Water, Transport, Ageing, Growth, Employment, Shelter, Health, Education and Energy. Each team of 6 was led by a professional designer (from the discipline of architecture, interior design, industrial design, urban design, graphic design or landscape architecture) who was a catalyst for driving the student creative thinking process. Assisted by illustrators, the teams prepared a visual presentation of their idea from art materials provided. The workshop culminated in a video-taped interactive design chatter to the larger group, which will be utilised as a toolkit and praxis for teachers as part of the State Library of Queensland Design Minds Project. Photos of student design work were published on the Unlimited website.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The somatosensory system plays an important role in balance control and age-related changes to this system have been implicated in falls. Parkinson’s disease (PD) is a chronic and progressive disease of the brain, characterized by postural instability and gait disturbance. Previous research has shown that deficiencies in somatosensory feedback may contribute to the poorer postural control demonstrated by PD individuals. However, few studies have comprehensively explored differences in somatosensory function and postural control between PD participants and healthy older individuals. The soles of the feet contain many cutaneous mechanoreceptors that provide important somatosensory information sources for postural control. Different types of insole devices have been developed to enhance this somatosensory information and improve postural stability, but these devices are often too complex and expensive to integrate into daily life. Textured insoles provide a more passive intervention that may be an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. However, to date, there has been little work conducted to test the efficacy of enhanced somatosensory input induced by textured insoles in both healthy and PD populations during standing and walking. Therefore, the aims of this thesis were to determine: 1) whether textured insole surfaces can improve postural stability by enhancing somatosensory information in younger and older adults, 2) the differences between healthy older participants and PD participants for measures of physiological function and postural stability during standing and walking, 3) how changes in somatosensory information affect postural stability in both groups during standing and walking; and 4), whether textured insoles can improve postural stability in both groups during standing and walking. To address these aims, Study 1 recruited seven older individuals and ten healthy young controls to investigate the effects of two textured insole surfaces on postural stability while performing standing balance tests on a force plate. Participants were tested under three insole surface conditions: 1) barefoot; 2) standing on a hard textured insole surface; and 3), standing on a soft textured insole surface. Measurements derived from the centre of pressure displacement included the range of anterior-posterior and medial-lateral displacement, path length and the 90% confidence elliptical area (C90 area). Results of study 1 revealed a significant Group*Surface*Insole interaction for the four measures. Both textured insole surfaces reduced postural sway for the older group, especially in the eyes closed condition on the foam surface. However, participants reported that the soft textured insole surface was more comfortable and, hence, the soft textured insoles were adopted for Studies 2 and 3. For Study 2, 20 healthy older adults (controls) and 20 participants with Parkinson’s disease were recruited. Participants were evaluated using a series of physiological assessments that included touch sensitivity, vibratory perception, and pain and temperature threshold detection. Furthermore, nerve function and somatosensory evoked potentials tests were utilized to provide detailed information regarding peripheral nerve function for these participants. Standing balance and walking were assessed on different surfaces using a force plate and the 3D Vicon motion analysis system, respectively. Data derived from the force plate included the range of anterior-posterior and medial-lateral sway, while measures of stride length, stride period, cadence, double support time, stance phase, velocity and stride timing variability were reported for the walking assessment. The results of this study demonstrated that the PD group had decrements in somatosensory function compared to the healthy older control group. For electrodiagnosis, PD participants had poorer nerve function than controls, as evidenced by slower nerve conduction velocities and longer latencies in sural nerve and prolonged latency in the P37 somatosensory evoked potential. Furthermore, the PD group displayed more postural sway in both the anterior-posterior and medial-lateral directions relative to controls and these differences were increased when standing on a foam surface. With respect to the gait assessment, the PD group took shorter strides and had a reduced stride period compared with the control group. Furthermore, the PD group spent more time in the stance phase and had increased cadence and stride timing variability than the controls. Compared with walking on the firm surface, the two groups demonstrated different gait adaptations while walking on the uneven surface. Controls increased their stride length and stride period and decreased their cadence, which resulted in a consistent walking velocity on both surfaces. Conversely, while the PD patients also increased their stride period and decreased their cadence and stance period on the uneven surface, they did not increase their stride length and, hence walked slower on the uneven surface. In the PD group, there was a strong positive association between decreased somatosensory function and decreased clinical balance, as assessed by the Tinetti test. Poorer somatosensory function was also strongly positively correlated with the temporospatial gait parameters, especially shorter stride length. Study 3 evaluated the effects of manipulating the somatosensory information from the plantar surface of the feet using textured insoles in the same populations assessed in Study 2. For this study, participants performed the standing and walking balance tests under three footwear conditions: 1) barefoot; 2) with smooth insoles; and 3), with textured insoles. Standing balance and walking were evaluated using a force plate and a Vicon motion analysis system and the data were analysed in the same way outlined for Study 2. The findings showed that the smooth and textured insoles caused different effects on postural control during both the standing and walking trials. Both insoles decreased medial-lateral sway to the same level on the firm surface. The greatest benefits were observed in the PD group while wearing the textured insole. When standing under a more challenging condition on the foam surface with eyes closed, only the textured insole decreased medial-lateral sway in the PD group. With respect to the gait trials, both insoles increased walking velocity, stride length and stride time and decreased cadence, but these changes were more pronounced for the textured insoles. The effects of the textured insoles were evident under challenging conditions in the PD group and increased walking velocity and stride length, while decreasing cadence. Textured insoles were also effective in reducing the time spent in the double support and stance phases of the gait cycle and did not increase stride timing variability, as was the case for the smooth insoles for the PD group. The results of this study suggest that textured insoles, such as those evaluated in this research, may provide a low-cost means of improving postural stability in high-risk groups, such as people with PD, which may act as an important intervention to prevent falls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To describe barefoot, shod and in-shoe kinematics during stance phase of walking gait in a normal arched adult population. An equal sample of males and females (n = 24) was recruited. In order to quantify the effect of footwear independent of technical design features, an ASICS shoe (Onitsuka Tiger-Mexico 66, Japan) was used in this study. Markers were applied to three conditions; barefoot, shod, and in-shoe. The calibration markers were used to define static pose. The order of testing was randomised. Participants completed five trials in each condition. Kinematic data were captured using a 12 camera VICON MX40 motion capture system at 100 Hz and processed in Visual3D. A previously developed model was used to describe joint angles [1]. A univariate two-way ANOVA was used to identify any differences between the pairs of conditions. Post-hoc Sheffé tests were used to further interrogate the data for differences. At peak hallux dorsiflexion (Figure 1), during propulsion, the metatarsophalangeal joint (MPTJ) was significantly more dorsiflexed in the barefoot condition compared to the shod condition (p = 0.004). At the same gait event, the tibiocalcaneal joint (TCJ) was significantly more plantarflexed than both the shod and in-shoe conditions (p < 0.001), and the tarsometatarsal joint (TMTJ) was significantly less dorsiflexed in the barefoot condition compared to the shod and in-shoe conditions (p < 0.001). The findings of the current study demonstrate that footwear has significant effects on sagittal plane MPTJ joint dorsiflexion at peak hallux dorsiflexion, which results in compensations at proximal foot joints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson’s disease (PD) patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. Methods 20 healthy older adults (controls) and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam), under three footwear conditions: 1) barefoot; 2) smooth insoles; and 3) textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. Results On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. Conclusions Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Despite the emerging use of treadmills integrated with pressure platforms as outcome tools in both clinical and research settings, published evidence regarding the measurement properties of these new systems is limited. This study evaluated the within– and between–day repeatability of spatial, temporal and vertical ground reaction forces measured by a treadmill system instrumented with a capacitance–based pressure platform. Methods Thirty three healthy adults (mean age, 21.5 ± 2.8 years; height, 168.4 ± 9.9 cm; and mass, 67.8 ± 18.6 kg), walked barefoot on a treadmill system (FDM–THM–S, Zebris Medical GmbH) on three separate occasions. For each testing session, participants set their preferred pace but were blinded to treadmill speed. Spatial (foot rotation, step width, stride and step length), temporal (stride and step times, duration of stance, swing and single and double support) and peak vertical ground reaction force variables were collected over a 30–second capture period, equating to an average of 52 ± 5 steps of steady–state walking. Testing was repeated one week following the initial trial and again, for a third time, 20 minutes later. Repeated measures ANOVAs within a generalized linear modelling framework were used to assess between–session differences in gait parameters. Agreement between gait parameters measured within the same day (session 2 and 3) and between days (session 1 and 2; 1 and 3) were evaluated using the 95% repeatability coefficient. Results There were statistically significant differences in the majority (14/16) of temporal, spatial and kinetic gait parameters over the three test sessions (P < .01). The minimum change that could be detected with 95% confidence ranged between 3% and 17% for temporal parameters, 14% and 33% for spatial parameters, and 4% and 20% for kinetic parameters between days. Within–day repeatability was similar to that observed between days. Temporal and kinetic gait parameters were typically more consistent than spatial parameters. The 95% repeatability coefficient for vertical force peaks ranged between ± 53 and ± 63 N. Conclusions The limits of agreement in spatial parameters and ground reaction forces for the treadmill system encompass previously reported changes with neuromuscular pathology and footwear interventions. These findings provide clinicians and researchers with an indication of the repeatability and sensitivity of the Zebris treadmill system to detect changes in common spatiotemporal gait parameters and vertical ground reaction forces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Footwear remains a prime candidate for the prevention and rehabilitation of Achilles tendinopathy as it is thought to decrease tension in the tendon through elevation of the heel. However, evidence for this effect is equivocal. Purpose: This study used an acoustic transmission technique to investigate the effect of running shoes on Achilles tendon loading during barefoot and shod walking. Methods: Acoustic velocity was measured in the Achilles tendon of twelve recreationally–active males (age, 31±9 years; height, 1.78±0.06 m; weight, 81.0±16.9 kg) during barefoot and shod walking at matched self–selected speed (3.4±0.7 km/h). Standard running shoes incorporating a 10– mm heel offset were used. Vertical ground reaction force and spatiotemporal parameters were determined with an instrumented treadmill. Axial acoustic velocity in the Achilles tendon was measured using a custom built ultrasonic device. All data were acquired at a rate of 100 Hz during 10s of steady–state walking. Statistical comparisons between barefoot and shod conditions were made using paired t–tests and repeated measure ANOVAs. Results: Acoustic velocity in the Achilles tendon was highly reproducible and was typified by two maxima (P1, P2) and minima (M1, M2) during walking. Footwear resulted in a significant increase in step length, stance duration and peak vertical ground reaction force compared to barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes. Conclusions: Peak acoustic velocity in the Achilles tendon was higher with footwear, suggesting that standard running shoes with a 10–mm heel offset increase tensile load in the Achilles tendon. Although further research is required, these findings question the therapeutic role of standard running shoes in Achilles tendinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims Elevated dynamic plantar pressures are a consistent finding in diabetes patients with peripheral neuropathy with implications for plantar foot ulceration. This meta-analysis aimed to compare the plantar pressures of diabetes patients that had peripheral neuropathy and those with neuropathy with active or previous foot ulcers. Methods Published articles were identified from Medline via OVID, CINAHL, SCOPUS, INFORMIT, Cochrane Central EMBASE via OVID and Web of Science via ISI Web of Knowledge bibliographic databases. Observational studies reporting barefoot dynamic plantar pressure in adults with diabetic peripheral neuropathy, where at least one group had a history of plantar foot ulcers were included. Interventional studies, shod plantar pressure studies and studies not published in English were excluded. Overall mean peak plantar pressure (MPP) and pressure time integral (PTI) were primary outcomes. The six secondary outcomes were MPP and PTI at the rear foot, mid foot and fore foot. The protocol of the meta-analysis was published with PROPSERO, (registration number CRD42013004310). Results Eight observational studies were included. Overall MPP and PTI were greater in diabetic peripheral neuropathy patients with foot ulceration compared to those without ulceration (standardised mean difference 0.551, 95% CI 0.290–0.811, p<0.001; and 0.762, 95% CI 0.303–1.221, p = 0.001, respectively). Sub-group analyses demonstrated no significant difference in MPP for those with neuropathy with active ulceration compared to those without ulcers. A significant difference in MPP was found for those with neuropathy with a past history of ulceration compared to those without ulcers; (0.467, 95% CI 0.181– 0.753, p = 0.001). Statistical heterogeneity between studies was moderate. Conclusions Plantar pressures appear to be significantly higher in patients with diabetic peripheral neuropathy with a history of foot ulceration compared to those with diabetic neuropathy without a history of ulceration. More homogenous data is needed to confirm these findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foot morphology and function has received increasing attention from both biomechanics researchers and footwear manufacturers. In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23 +/- 2.4years, 66 +/- 7.1kg & 1.68 +/- 0.13m and 78 females whose age, weight & height were 22 +/- 1.8years, 55 +/- 4.7kg & 1.6 +/- 0.11m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24 +/- 2.6years, 66 +/- 8.2kg & 1.72 +/- 0.18m and 66 females whose age, weight & height were 23 +/- 1.5years, 54 +/- 5.6kg & 1.62 +/- 0.15m)(Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging. Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences. This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe. This study suggests that significant differences in morphology between different ethnicities could be considered for future investigation of locomotion biomechanics characteristics between ethnicities and inform last shape and design so as to reduce injury risks and poor performance from mal-fit shoes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the forefoot loading character under flexible sole condition while performing landing maneuver. Twenty healthy male volunteers have participated in the test. The insole and outsole loading were measured at the same time. The results of this study shown that the forefoot impact loading could be effectively relieved through the footwear during landing movement. The peak pressure value in the outsole was much higher than the barefoot, where the highest value in the first metatarsal of outsole was 63.6% higher than barefoot condition. Peak pressure of the third metatarsal of insole reduced the most, this has decreased about 51.2% of the barefoot experienced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Young females with mild hallux valgus (HV) have been identified as having an increased risk of first ray deformation. Little is known, however, about the biomechanical changes that might contribute to this increased risk. The purpose of this study was to compare kinetics changes during walking for mild HV subjects with high-heel-height shoes. Twelve female subjects (six with mild HV and six controls) participated in this study with heel height varying from 0 cm (barefoot) to 4.5 cm. Compared to healthy controls, patients had significantly higher peak pressure on the big toe area during barefoot walking. When the heel height increased, loading was transferred to medial side of the forefoot, and the big toe area suffered more impact compared to barefoot in mild HV. This study also demonstrated that the center of pressure (COP) inclines to medial side alteration after high-heeled shoes wearing. These findings indicate that mild HV people should be discouraged from wearing high-heeled shoes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recommendations - 1 To identify a person with diabetes at risk for foot ulceration, examine the feet annually to seek evidence for signs or symptoms of peripheral neuropathy and peripheral artery disease. (GRADE strength of recommendation: strong; Quality of evidence: low) - 2 In a person with diabetes who has peripheral neuropathy, screen for a history of foot ulceration or lower-extremity amputation, peripheral artery disease, foot deformity, pre-ulcerative signs on the foot, poor foot hygiene and ill-fitting or inadequate footwear. (Strong; Low) - 3 Treat any pre-ulcerative sign on the foot of a patient with diabetes. This includes removing callus, protecting blisters and draining when necessary, treating ingrown or thickened toe nails, treating haemorrhage when necessary and prescribing antifungal treatment for fungal infections. (Strong; Low) - 4 To protect their feet, instruct an at-risk patient with diabetes not to walk barefoot, in socks only, or in thin-soled standard slippers, whether at home or when outside. (Strong; Low) - 5 Instruct an at-risk patient with diabetes to daily inspect their feet and the inside of their shoes, daily wash their feet (with careful drying particularly between the toes), avoid using chemical agents or plasters to remove callus or corns, use emollients to lubricate dry skin and cut toe nails straight across. (Weak; Low) - 6 Instruct an at-risk patient with diabetes to wear properly fitting footwear to prevent a first foot ulcer, either plantar or non-plantar, or a recurrent non-plantar foot ulcer. When a foot deformity or a pre-ulcerative sign is present, consider prescribing therapeutic shoes, custom-made insoles or toe orthosis. (Strong; Low) - 7 To prevent a recurrent plantar foot ulcer in an at-risk patient with diabetes, prescribe therapeutic footwear that has a demonstrated plantar pressure-relieving effect during walking (i.e. 30% relief compared with plantar pressure in standard of care therapeutic footwear) and encourage the patient to wear this footwear. (Strong; Moderate) - 8 To prevent a first foot ulcer in an at-risk patient with diabetes, provide education aimed at improving foot care knowledge and behaviour, as well as encouraging the patient to adhere to this foot care advice. (Weak; Low) - 9 To prevent a recurrent foot ulcer in an at-risk patient with diabetes, provide integrated foot care, which includes professional foot treatment, adequate footwear and education. This should be repeated or re-evaluated once every 1 to 3 months as necessary. (Strong; Low) - 10 Instruct a high-risk patient with diabetes to monitor foot skin temperature at home to prevent a first or recurrent plantar foot ulcer. This aims at identifying the early signs of inflammation, followed by action taken by the patient and care provider to resolve the cause of inflammation. (Weak; Moderate) - 11 Consider digital flexor tenotomy to prevent a toe ulcer when conservative treatment fails in a high-risk patient with diabetes, hammertoes and either a pre-ulcerative sign or an ulcer on the distal toe. (Weak; Low) - 12 Consider Achilles tendon lengthening, joint arthroplasty, single or pan metatarsal head resection, or osteotomy to prevent a recurrent foot ulcer when conservative treatment fails in a high-risk patient with diabetes and a plantar forefoot ulcer. (Weak; Low) - 13 Do not use a nerve decompression procedure in an effort to prevent a foot ulcer in an at-risk patient with diabetes, in preference to accepted standards of good quality care. (Weak; Low)