965 resultados para Axon Guidance


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although the principles of axon growth are well understood in vitro the mechanisms guiding axons in vivo are less clear. It has been postulated that growing axons in the vertebrate brain follow borders of neuroepithelial cells expressing specific regulatory genes. In the present study we reexamined this hypothesis by analysing the earliest growing axons in the forebrain of embryonic zebrafish. Confocal laser scanning microscopy was used to determine the spatiotemporal relationship between growing axons and the expression pattern of eight regulatory genes in zebrafish brain. Pioneer axons project either longitudinally or dorsoventrally to establish a scaffold of axon tracts during this developmental period. Each of the regulatory genes was expressed in stereotypical domains and the borders of some were oriented along dorsoventral and longitudinal planes. However, none of these borders clearly defined the trajectories of pioneer axons. In two cases axons coursed in proximity to the borders of shh and pax6, but only for a relatively short portion of their pathway. Only later growing axons were closely apposed to the borders of some gene expression domains. These results suggest that pioneer axons in the embryonic forebrain do not follow continuous pathways defined by the borders of regulatory gene expression domains, (C) 2000 Academic Press.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The zebrafish has a number of distinct advantages as an experimental model in developmental biology. For example, large numbers of embryos can be generated in each lay, development proceeds rapidly through a very precise temporal staging which exhibits minimal batch-to-batch variability, embryos are transparent and imaging of wholemounts negates the need for tedious histological preparation while preserving three-dimensional spatial relationships. The zebrafish nervous system is proving a convenient model for studies of axon guidance because of its small size and highly stereotypical trajectory of axons. Moreover, a simple scaffold of axon tracts and nerves is established early and provides a template for subsequent development. The ease with which this template can be visualized as well as the ability to spatially resolve individual pioneer axons enables the role of specific cell-cell and molecular interactions to be clearly deciphered. We describe here the morphology and development of the earliest axon pathways in the embryonic zebrafish central nervous system and highlight the major questions that remain to be addressed with regard to axon guidance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The process of establishing long-range neuronal connections can be divided into at least three discrete steps. First, axons need to be stimulated to grow and this growth must be towards appropriate targets. Second, after arriving at their target, axons need to be directed to their topographically appropriate position and in some cases, such as in cortical structures, they must grow radially to reach the correct laminar layer Third, axons then arborize and form synaptic connections with only a defined subpopulation of potential post-synaptic partners. Attempts to understand these mechanisms in the visual system have been ongoing since pioneer studies in the 1940s highlighted the specificity of neuronal connections in the retino-tectal pathway. These classical systems-based approaches culminated in the 1990s with the discovery that Eph-ephrin repulsive interactions were involved in topographical mapping. In marked contrast, it was the cloning of the odorant receptor family that quickly led to a better understanding of axon targeting in the olfactory system. The last 10 years have seen the olfactory pathway rise in prominence as a model system for axon guidance. Once considered to be experimentally intractable, it is now providing a wealth of information on all aspects of axon guidance and targeting with implications not only for our understanding of these mechanisms in the olfactory system but also in other regions of the nervous system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS). The extracellular matrix (ECM) represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries) that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Repulsive guidance molecules (RGM) are high-affinity ligands for the Netrin receptor Neogenin, and they are crucial for nervous system development including neural tube closure; neuronal and neural crest cell differentiation and axon guidance. Recent studies implicated RGM molecules in bone morphogenetic protein signaling, which regulates a variety of developmental processes. Moreover, a role for RGMc in iron metabolism has been established. This suggests that RGM molecules may play important roles in non-neural tissues. Results: To explore which tissues and processed may be regulated by RGM molecules, we systematically investigated the expression of RGMa and RGMb, the only RGM molecules currently known for avians, in the chicken embryo. Conclusions: Our study suggests so far unknown roles of RGM molecules in notochord, somite and skeletal muscle development. Developmental Dynamics, 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Olfactory marker protein (OMP) is expressed by mature primary olfactory sensory neurons during development and in adult mice. In mice that lack OMP, olfactory sensory neurons have perturbed electrophysiological activity, and the mice exhibit altered responses and behavior to odor stimulation. To date, defects in axon guidance in mice that lack OMP have not been investigated. During development of the olfactory system in mouse, primary olfactory axons often overshoot their target glomerular layer and project into the deeper external plexiform layer. These aberrant axonal projections are normally detected within the external plexiform layer up to postnatal day 12. We have examined the projections of primary olfactory axons in OMP-tau:LacZ mice and OMP-GFP mice, two independent lines in which the OMP coding region has been replaced by reporter molecules. We found that axons overshoot their target layer and grow into the external plexiform layer in these OMP null mice as they do in wild-type animals. However, in the absence of OMP, overshooting axons are more persistent and remain prominent until 5 weeks postnatally, after which their numbers decrease. Overshooting axons are still present in these mice even at 8 months of age. In heterozygous mice, axons also overshoot into the external plexiform layer; however, there are fewer axons, and they project for shorter distances, compared with those in a homozygous environment. Our results suggest that perturbed electrophysiological responses, caused by loss of OMP in primary olfactory neurons, reduce the ability of primary olfactory axons to recognize their glomerular target. © 2005 Wiley-Liss, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo ( Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons ( up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Members of the Wnt family and their receptors, the Frizzleds, are key regulators of pivotal developmental processes including embryonic patterning, specification of cell fate, and determination of cell polarity. The versatility and complexity of Wnt signaling has been further highlighted by the emergence of a novel family of Wnt receptors, the Ryk family. In mammals and flies, Ryk is a key chemorepulsive axon guidance receptor responsible for the establishment of important axon tracts during nervous system development. Although the function of Ryk is currently best understood with respect to this role, its widespread expression, both in developing tissues and in the adult, suggests that Ryk may regulate many essential biological processes. This hypothesis is supported by the multiple developmental phenotypes apparent in Ryk loss-of-function mice. These mice display a variety of embryonic abnormalities, including disruption of skeletal, craniofacial and cardiac development. Here we review Ryk structure and function focusing on its activity as an axon guidance receptor. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are, at least, two major questions concerning the molecular development of the olfactory nerve pathway. First, what are the molecular cues responsible for guiding axons from the nasal cavity to the olfactory bulb? Second, what is the molecular basis of axon targeting to specific glomeruli once axons reach the olfactory bulb? Studies in the primary olfactory pathway have focused on the role of the extracellular matrix and ensheathing cells in establishing an initial substrate for growth of pioneer axons between the periphery and brain. The primary axons also express a multitude of cell adhesion molecules that regulate fasciculation of axons and hence may play a role in fascicle formation in the olfactory nerve. Although the olfactory neuroepithelium principally consists of a morphologically homogeneous class of primary olfactory neurons, there are numerous subpopulations of olfactory neurons expressing chemically distinct phenotypes. In particular, numerous subpopulations have been characterized by expression of unique carbohydrate residues and olfactory receptor proteins. Some of these molecules have recently been implicated in axon guidance and targeting to specific glomeruli.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The olfactory neuroepithelium is a highly plastic region of the nervous system that undergoes continual turnover of primary olfactory neurons throughout life. The mechanisms responsible for persistent growth and guidance of primary olfactory axons along the olfactory nerve are unknown. In the present study, we used antibodies against the Eph-related receptor, EphA5, to localise EphA5, and recombinant EDhA5-IgG fusion protein to localise its ligands. We found that although both EphA5 and its ligands were both expressed by primary olfactory neurons within the embryonic olfactory nerve pathway, there was no graded or complementary expression pattern. In contrast, the expression patterns altered postnatally such that primary olfactory neurons expressed the ligands, whereas the second-order olfactory neurons, the mitral cells, expressed EphA5. The role of EphA5 was analysed by blocking EphA5-ligand interactions in explant cultures of olfactory neuroepithelium using anti-EphA5 antibodies and recombinant EphA5. These perturbations reduced neurite outgrowth from explant cultures and suggest that intrafascicular axon repulsion may serve to limit adhesion and optimise conditions for axon growth. (C) 2000 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the developing vertebrate brain, growing axons establish a scaffold of axon tracts connected across the midline via commissures. We have previously identified a population of telencephalic neurons that express NOC-2, a novel glycoform of the neural cell adhesion molecule N-CAM that is involved in axon guidance in the forebrain. These axons arise from the presumptive telencephalic nucleus, course caudally along the principal longitudinal tract of the forebrain, cross the ventral midline in the midbrain, and then project to the contralateral side of the brain. In the present study we have investigated mechanisms controlling the growth of these axons across the ventral midline of the midbrain. The axon guidance receptor DCC is expressed by the NOC-2 population of axons both within the longitudinal tract and within the ventral midbrain commissure. Disruption of DCC-dependent interactions, both in vitro and in vivo, inhibited the NOC-2 axons from crossing the ventral midbrain. Instead, these axons grew along aberrant trajectories away from the midline, suggesting that DCC-dependent interactions are important for overcoming inhibitory mechanisms within the midbrain of the embryonic vertebrate brain. Thus, coordinated responsiveness of forebrain axons to both chemostimulatory and chemorepulsive cues appears to determine whether they cross the ventral midline in the midbrain, (C) 2000 Academic Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chondroitin sulfate proteoglycans neurocan and phosphacan are believed to modulate neurite outgrowth by binding to cell adhesion molecules, tenascin, and the differentiation factors heparin-binding growth-associated molecule and amphoterin. To assess the role of these chondroitin sulfate proteoglycans in the olfactory system, we describe here their expression patterns during both embryonic and postnatal development in the mouse. Immunoreactivity for neurocan was first detected in primary olfactory neurons at embryonic day 11.5 (E11.5). Neurocan was expressed by primary olfactory axons as they extended toward the rostral pole of the telencephalon as well as by their arbors in glomeruli after they contacted the olfactory bulb. The role of neurocan was examined by growing olfactory neurons on an extracellular matrix substrate containing neurocan or on extracellular matrix in the presence of soluble neurocan. In both cases, neurocan strongly promoted neurite outgrowth. These results suggest that neurocan supports the growth of primary olfactory axons through the extracellular matrix as they project to the olfactory bulb during development. Phosphacan, unlike neurocan, was present within the mesenchyme surrounding the E11.5 and E12.5 nasal cavity. This expression decreased at E13.5, concomitant with a transient appearance of phosphacan in nerve fascicles. Within the embryonic olfactory bulb, phosphacan was localised to the external and internal plexiform layers. However, during early postnatal development phosphacan was concentrated in the glomerular layer. These results suggest that phosphacan may play a role in delineating the pathway of growing olfactory axons as well as defining the laminar organization of the bulb. Together, the spatiotemporal expression patterns of neurocan and phosphacan indicate that these chondroitin sulfate proteoglycans have diverse in situ roles, which are dependent on context-specific interactions with extracellular and cell adhesion molecules within the developing olfactory nerve pathway. (C) 2000 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SUBPOPULATIONS of olfactory receptor neurons, which are dispersed throughout the olfactory neuroepithelium, express specific cell surface carbohydrates and project to discrete regions of the olfactory bulb. Cell surface carbohydrates such as N-acetyl-lactosamine have been postulated to mediate sorting and selective fasciculation of discrete axon subpopulations during development of the olfactory pathway. Substrate-bound N-acetyl-lactosamine promotes neurite outgrowth by both clonal olfactory receptor neuron cell lines and olfactory receptor neurons in vitro, indicating that cell surface carbohydrates may be ligands for receptor-mediated stimulation of axon growth in vivo. In the present study, the role of transmembrane signaling in N-acetyl-lactosamine-stimulated neurite outgrowth was examined in the clonal olfactory neuron cell line 4.4.2. Substrate-bound N-acetyl-lactosamine stimulated neurite outgrowth which was specifically inhibited by antagonists to N- and L-type calcium channels and to tyrosine kinase phosphorylation. These results indicate that N-acetyl-lactosamine can evoke transmembrane receptor-mediated responses capable of influencing neurite outgrowth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Slit is expressed in the midline of the central nervous system both in vertebrates and invertebrates. In Drosophila, it is the midline repellent acting as a ligand for the Roundabout (Robo) protein, the repulsive receptor which is expressed on the growth cones of the commissural neurons. We have isolated cDNA fragments of the zebrafish slit2 and slit3 homologues and found that both genes start to be expressed by the midgastrula stage well before the axonogenesis begins in the nervous system, both in the axial mesoderm, and slit2 in the anterior margin of the neural plate and slit3 in the polster at the anterior end of the prechordal mesoderm. Later, expression of slit2 mRNA is detected mainly in midline structures such as the floor plate cells and the hypochord, and in the anterior margins of the neural plates in the zebrafish embryo, while slit3 expression is observed in the anterior margin of the prechordal plate, the floorplate cells in the hindbrain, and the motor neurons both in the hindbrain and the spinal cord. To study the role of Slit in early embryos, we overexpressed Slit2 in the whole embryos either by injection of its mRNA into one-cell stage embryos or by heat-shock treatment of the transgenic embryos which carries the slit2 gene under control of the heat-shock promoter. Overexpression of Slit2 in such ways impaired the convergent extension movement of the mesoderm and the rostral migration of the cells in the dorsal diencephalon and resulted in cyclopia. Our results shed light on a novel aspect of Slit function as a regulatory factor of mesodermal cell movement during gastrulation. (C) 2001 Academic Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primary olfactory neurons are located in the olfactory neuroepithelium lining the nasal cavity. Their axons converge and form glomeruli with the dendrites of second-order neurons in the olfactory bulb. The molecular basis of primary olfactory axon guidance, targeting and subsequent arborisation is largely unknown. In this study we examined the spatio-temporal expression of the Eph receptor EphB2 and its ligands, ephrin-B1 and ephrin-B2, during development of the rat primary olfactory system. Unlike in other regions of the nervous system where receptor and ligand expression patterns are usually non-overlapping, EphB2, ephrin-B1 and ephrin-B2 were all expressed by primary and second-order olfactory neurons. In the embryonic animal we found that these three proteins had distinct and different expression patterns. EphB2 was first expressed at E18.5 by the perikarya of primary olfactory neurons. In contrast, ephrin-B1 was expressed from E13.5 and was localised to the axons of these cells up to E18.5 but was then restricted to the perikarya. Ephrin-B2, however, was expressed by olfactory ensheathing cells. EphB2, ephrin-B1 and ephrin-B2 were also expressed in the prenatal olfactory bulb and were restricted to the perikarya of mitral cells. In the post-natal olfactory bulb there was a shift in the localisation of both EphB2 and ephrin-B1 to the dendritic arborisations of mitral cells. The dynamic and tightly regulated spatio-temporal expression patterns of EphB2, ephrin-B1 and ephrin-B2 by specific olfactory cell populations suggest that these molecules have the potential to regulate important developmental events in the olfactory system. (C) 2001 Elsevier Science B.V. All rights reserved.