904 resultados para Avian infectious bronchitis virus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of new infectious bronchitis virus (IBV) genotypes or serotypes along with the poor cross-protection observed among IBV serotypes have complicated the avian infectious bronchitis (IB) control programs in different geographic regions. In Cuba, the lack of genetic information regarding IBV and the increasing epidemiological importance of this virus in Cuban chicken flocks demand further characterization of IBV isolates. In the present work, studies of genetic diversity and phylogenetic relationships among recent IBV isolates from Cuban chicken flocks showing respiratory disorders were performed. Two putative genotypes genetically different to the Massachusetts genotype H120 strain used in the Cuban vaccination program were found in the flocks assessed. In addition, a potential nephropathogenic IBV isolate was found by first time in Cuba. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorylation of the coronavirus nucleoprotein (N protein) has been predicted to play a role in RNA binding. To investigate this hypothesis, we examined the kinetics of RNA binding between nonphosphorylated and phosphorylated infectious bronchitis virus N protein with nonviral and viral RNA by surface plasmon resonance (Biacore). Mass spectroscopic analysis of N protein identified phosphorylation sites that were proximal to RNA binding domains. Kinetic analysis, by surface plasmon resonance, indicated that nonphospborylated N protein bound with the same affinity to viral RNA as phosphorylated N protein. However, phosphorylated N protein bound to viral RNA with a higher binding affinity than nonviral RNA, suggesting that phosphorylation of N protein determined the recognition of virus RNA. The data also indicated that a known N protein binding site (involved in transcriptional regulation) consisting of a conserved core sequence present near the 5' end of the genome (in the leader sequence) functioned by promoting high association rates of N protein binding. Further analysis of the leader sequence indicated that the core element was not the only binding site for N protein and that other regions functioned to promote high-affinity binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infectious bronchitis is a highly contagious respiratory disease of poultry caused by the coronavirus IBV. It was thought that coronavirus virions were composed of three major viral structural proteins, until investigations of other coronaviruses showed that coronavirus virions also include viral non-structural and group specific proteins as well as host cell proteins. To study the proteome of IBV virions, virus was grown in embryonated chicken eggs and purified by sucrose gradient ultracentrifugation and analysed by mass spectrometry proteomic. Analysis of three preparations of purified IBV yielded the three expected structural proteins plus thirty-five additional virion-associated host proteins. Virion-associated host proteins had a diverse range of functional attributions, being involved in cytoskeleton formation, RNA binding and protein folding pathways. Some of these proteins were unique to this study, whilst others were found to be orthologous to proteins identified in SARS-CoV virions, and also virions from a number of other RNA and DNA viruses. Together these results demonstrate that coronaviruses have the capacity to incorporate a substantial variety of host protein, which may have implications for the disease process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concanavalin A-Sandwich ELISA (Con A-S-ELISA) was developed for the detection of infectious bronchitis virus (IBV) or chicken specific anti-viral antibodies. The antigen detection limit for the Con A-S-ELISA was 10(5,1) EID50/mL. Three homologous and four heterologous IBV strains were similarly detected. This assay was highly effective in detecting the virus after infected tissue homogenates were passed once in embryonated chicken eggs, showing a good agreement with virus isolation technique. The Con A-S-ELISA was also used to measure anti-IBV chicken antibodies and showed a high coefficient of correlation (r = 0.85) and an agreement of k = 0.80 with the commercially available Indirect-ELISA. The relative sensitivity and specificity between these two tests were, respectively, 92.86% and 95.65% with an accuracy of 93.39%. Thus, the Con A-S-ELISA proved to be able to detect alternatively homologous and heterologous IBV strains or specific chicken anti-IBV antibodies, using the Con A as capture reagent of this assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Saccharomyces cerevisiae-expressed nucleocapsid (N) polypeptide of the M41 strain of infectious bronchitis virus (IBV) was used as antigen in a recombinant yeast-expressed N protein-based enzyme-linked immunosorbent assay (Y-N-ELISA). The Y-N-ELISA was rapid, sensitive, and specific for detecting chicken serum antibodies to IBV, and it compared favorably with a commercial ELISA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semi-nested reverse transcription-polymerase chain reaction (Semi-N-RT-PCR) was developed and used to detect the S glycoprotein gene of infectious bronchitis virus (IBV) strains and to discriminate H120 vaccine strain from other strains. Viral RNA was extracted from the allantoic fluid of chicken embryos and from tissues of chickens experimentally infected with different strains of IBV. Amplification and identification of the viral RNA was performed using two sets of primers complementary to a region of the S glycoprotein gene in the Semi-N-RT-PCR assay. The pair of primers used in the first PCR consisted of universal oligonucleotides flanking a more variable region of S1-S2 gene. The second primer pair was used in the Semi-N-RT-PCR and was comprised of one of the primers from the first universal pair together with either another universal internal oligolucleotide or a oligonucleotide sequence specific for the H120 strain of IBV. The universal primers detected all reference IBV strains and field isolates tested herein. The Semi-N-RT-PCR had high sensitivity and specificity, and was able to differentiate the H120 vaccine strain from other reference IBV strains; including M41 strain. All tissue samples collected from chickens experimentally infected with H120 or M41 strains were positive in the semi-nested RT-PCR using universal primers, while only the H120-infected tissue samples were amplified by the set of primers containing the H120-oligonucleotide. In conclusion, the ability of Semi-N-RT-PCR to detect distinct IBV strains and preliminarily discriminate the vaccine strain (H120) closes a diagnostic gap and offers the opportunity to use comprehensive PCR procedures for the IBV diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A liquid phase blocking ELISA (LPB-ELISA) was developed for the detection and measurement of antibodies against infectious bronchitis virus (IBV). The purified and nonpurified virus used as antigen, the capture and detector antibodies, and the chicken hyperimmune sera were prepared and standardized for this purpose. A total of 156 sera from vaccinated and 100 from specific pathogen-free chickens with no recorded contact with the virus were tested. The respective serum titers obtained in the serum neutralization test (SNT) were compared with those obtained in the LPB-ELISA. There was a high correlation (r2 = 0.8926) between the two tests. The LPB-ELISA represents a single test suitable for the rapid detection of antibodies against bronchitis virus in chicken sera, with good sensitivity (88%), specificity (100%) and agreement (95.31%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The key enzyme in coronavirus replicase polyprotein processing is the coronavirus main protease, 3CL(pro). The substrate specificities of five coronavirus main proteases, including the prototypic enzymes from the coronavirus groups I, II and III, were characterized. Recombinant main proteases of human coronavirus (HCoV), transmissible gastroenteritis virus (TGEV), feline infectious peritonitis virus, avian infectious bronchitis virus and mouse hepatitis virus (MHV) were tested in peptide-based trans-cleavage assays. The determination of relative rate constants for a set of corresponding HCoV, TGEV and MHV 3CL(pro) cleavage sites revealed a conserved ranking of these sites. Furthermore, a synthetic peptide representing the N-terminal HCoV 3CL(pro) cleavage site was shown to be effectively hydrolysed by noncognate main proteases. The data show that the differential cleavage kinetics of sites within pp1a/pp1ab are a conserved feature of coronavirus main proteases and lead us to predict similar processing kinetics for the replicase polyproteins of all coronaviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike nuclear localization signals, there is no obvious consensus sequence for the targeting of proteins to the nucleolus. The nucleolus is a dynamic subnuclear structure which is crucial to the normal operation of the eukaryotic cell. Studying nucleolar trafficking signals is problematic as many nucleolar retention signals (NoRSs) are part of classical nuclear localization signals (NLSs). In addition, there is no known consensus signal with which to inform a study. The avian infectious bronchitis virus (IBV), coronavirus nucleocapsid (N) protein, localizes to the cytoplasm and the nucleolus. Mutagenesis was used to delineate a novel eight amino acid motif that was necessary and sufficient for nucleolar retention of N protein and colocalize with nucleolin and fibrillarin. Additionally, a classical nuclear export signal (NES) functioned to direct N protein to the cytoplasm. Comparison of the coronavirus NoRSs with known cellular and other viral NoRSs revealed that these motifs have conserved arginine residues. Molecular modelling, using the solution structure of severe acute respiratory (SARS) coronavirus N-protein, revealed that this motif is available for interaction with cellular factors which may mediate nucleolar localization. We hypothesise that the N-protein uses these signals to traffic to and from the nucleolus and the cytoplasm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)