996 resultados para Au(111)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of biadipate on Au(111) was studied by cyclic voltammetry and chronocoulometry. The biadipate adlayer undergoes a potential-driven phase transition. It is shown that the phase transition can be either of the first- or second-order depending on the biadipate concentration. At low surfactant concentrations, the first-order transition is characterised by a discontinuity in the charge density-potential curve and by the presence of very sharp peaks in the voltammetric response. At higher concentrations, these peaks are no longer observed but a discontinuity in the capacity curve is still noticeable, in agreement with a second-order transition. © the Owner Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palladium clusters have been deposited on the surface of a Au(111) electrode with the tip of a scanning tunnelling microscope. The distance over which the tip was moved towards the surface has a decisive influence on the properties of the clusters: the larger this distance, the larger the generated clusters, and the more stable they are. These findings are supported by computer simulations, which further suggest that the larger clusters contain a sizable amount of gold, which enhances their stability. Dissolution of the clusters occurs from the edges rather than layer by layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of palladium clusters, generated with the electrochemical scanning tunneling microscope, have been investigated both by experiments and by computer simulations. The clusters are found to be larger and more stable if the tip is moved further towards the electrode surface in the generation process. The simulations suggest that the larger clusters consist of a palladium - gold mixture, which is more stable than pure palladium. Dissolution of the clusters occurs from the edges rather than layer by layer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

: Static calculation and preliminary kinetic Monte Carlo simulation studies are undertaken for the nucleation and growth on a model system which follows a Frank-van der Merwe mechanism. In the present case, we consider the deposition of Ag on Au(100) and Au(111) surfaces. The interactions were calculated using the embedded atom model. The kinetics of formation and growth of 2D Ag structures on Au(100) and Au(111) is investigated and the influence of surface steps on this phenomenon is studied. Very different time scales are predicted for Ag diffusion on Au(100) and Au(111), thus rendering very different regimes for the nucleation and growth of the related 2D phases. These observations are drawn from the application of a model free of any adjustable parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the semi-empirical embedded-atom method, the structure of small copper clusters on Au(111) surfaces has been investigated both by static and dynamic calculations. By varying the size of roughly circular clusters, the edge energy per atom is obtained; it agrees quite well with estimates based on experimental results. Small three-dimensional clusters tend to have the shape of a pyramid, whose sides are oriented in the directions of small surface energy. The presence of a cluster is found to distort the underlying lattice of adsorbed copper atoms. (C) 2002 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature-programmed reaction measurements supported by scanning tunneling microscopy have shown that phenylacetylene and iodobenzene react on smooth Au(111) under vacuum conditions to yield biphenyl and diphenyldiacetylene, the result of homocoupling of the reactant molecules. They also produce diphenylacetylene, the result of Sonogashira cross-coupling, prototypical of a class of reactions that are of paramount importance in synthetic organic chemistry and whose mechanism remains controversial. Roughened Au(111) is completely inert toward all three reactions, indicating that the availability of crystallographically well-defined adsorption sites is crucially important. High-resolution X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy show that the reactants are initially present as intact, essentially flat-lying molecules and that the temperature threshold for Sonogashira coupling coincides with that for C−I bond scission in the iodobenzene reactant. The fractional-order kinetics and low temperature associated with desorption of the Sonogashira product suggest that the reaction occurs at the boundaries of islands of adsorbed reactants and that its appearance in the gas phase is rate-limited by the surface reaction. These findings demonstrate unambiguously and for the first time that this heterogeneous cross-coupling chemistry is an intrinsic property of extended, metallic pure gold surfaces: no other species, including solvent molecules, basic or charged (ionic) species are necessary to mediate the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed an experimental structure determination of the ordered p(sqrt[3] x sqrt[3])R30 degrees structures of chlorine and iodine on Au{111} using low-energy electron diffraction (LEED). Despite great similarities in the structure of the underlying substrate, which shows only minor deviations from the bulk positions in both cases, chlorine and iodine are found to adsorb in different adsorption sites, fcc and hcp hollow sites, respectively. The experimental Au-Cl and Au-I bond lengths of 2.56 and 2.84 A are close to the sums of the covalent radii, supporting the view that the bond is essentially covalent in nature; however, they are significantly shorter than predicted theoretically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used low-temperature STM, together with DFT calculations incorporating the effects of dispersion forces, to study from a structural point of view the interaction of NO2 with Au{111} surfaces. NO2 adsorbs molecularly on Au{111} at 80 K, initially as small, disordered clusters at the elbows of the type-x reconstruction lines of the clean-surface herringbone reconstruction, and then as larger, ordered islands on the fcc regions. Within the islands, the NO2 molecules define a (√3 × 2)rect. superlattice, for which we evaluate structural models. By around 0.25 ML coverage, the herringbone reconstruction has been lifted, accompanied by the formation of Au nanoclusters, and the islands have coalesced. At this stage, essentially the whole surface is covered with an overlayer consisting predominantly of domains of the (√3 × 2)rect. structure, but also containing less wellordered regions. With further exposure, the degree of disorder in the overlayer increases; saturation occurs close to 0.43 ML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological effects of chemical substitution of DNA bases triggered several investigations of their physicochemical properties This paper studies the adsorption behavior of a halogenated uracil, 5-fluorouracil (5FU). at the electrochemical interface of Au(111) and sulfuric acid solution. Upon modulation of the electric field across the interface, four distinct phases could be inferred by means of cyclic voltammetry (CV) At negative potentials relative to the SCE electrode, limited by the threshold of hydrogen evolution, no molecular species could be detected by scanning tunneling microscopy (STM) at the reconstructed Au(111)-(23 x root 3) surface, indicating that any physisorbed molecules are randomly distributed Incursion into more positive potentials increases the surface population but doer not form any two-dimensional (2D) physisorbed ordered structure Instead, we observed metastable structures that are only detectable. on surfaces with high defect density At sufficiently high positive potentials. limited by gold oxidation, the molecules are chemisorbed in a (3 x 2 root 3) ordered structure. with the aromatic ring perpendicular to the surface We report the densest chemisorbed monolayer for pyrimidine-derivative molecules (area per molecule 0 14 +/- 0 04 nm(2)). A comparison of the adsorption behavior of uracil derivatives has been made based on recent results of chemical substitution and solvent effects. We propose that pi-stacking is enhanced when halogens are incorporated in the uracil structure, in a similar fashion to what is observed in then crystal structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning tunneling microscopy (STM) images of 1,10-phenanthroline (PHEN) and dipyrido[3,2-a:2‘,3‘-c]phenazine (DPPZ) on Au(111) are recorded using both in situ and ex situ techniques. The images of PHEN depict regimes of physisorption and chemisorption, whereas DPPZ is only physisorbed. All physisorbed structures are not pitted and fluctuate dynamically, involving aligned (4 × 4) surface domains with short-range (ca. 20 molecules) order for PHEN but unaligned chains with medium-range (ca. 100 molecules) order for DPPZ. In contrast, the chemisorbed PHEN monolayers remain stable for days, are associated with surface pitting, and form a (4 × √13)R46° lattice with long-range order. The density of pitted atoms on large gold terraces is shown to match the density of chemisorbed molecules, suggesting that gold adatoms link PHEN to the surface. For PHEN, chemisorbed and physisorbed adsorbate structures are optimized using plane-wave density-functional theory (DFT) calculations for the surface structure. Realistic binding energies are then obtained adding dispersive corrections determined using complete-active-space self-consistent field calculations using second-order perturbation theory (CASPT2) applied to cluster-interaction models. A fine balance between the large adsorbate−adsorbate dispersive forces, adsorbate−surface dispersive forces, gold ligation energy, and surface mining energy is shown to dictate the observed phenomena, leading to high surface mobility and substrate/surface lattice incommensurability. Increasing the magnitude of the dispersive forces through use of DPPZ, rather than PHEN, to disturb this balance produced physisorbed monolayers without pits and/or surface registration but with much longer-range order. Analogies are drawn with similar but poorly understood processes involved in the binding of thiols to Au(111).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The double layer structure of two ionic liquids (ILs), 1-butyl-1- methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate ([Py 1,4]FAP) and 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate ([EMIm]FAP) at the polarized Au(111) electrode interface is probed using Atomic Force Microscopy force measurements. The force-separation profiles suggest a multilayered morphology is present at the electrified Au(111)-IL interface, with more near surface layers detected at higher potentials. At the (slightly negative) open circuit potential, multiple ion layers are present, and the innermost layer, in contact with the Au(111) surface, is enriched in the cation due to electrostatic adsorption. Upon applying negative electrode potentials (-1.0 V, -2.0 V), stronger IL near surface structure is detected: both the number of ion layers and the force required to rupture these layers increases. Positive electrode potentials (+1.0 V, +2.0 V) also enhance IL near surface structure, but not as much as negative potentials, because surface-adsorbed anions are less effective at templating structure in subsequent layers than cations. This interfacial structure is not consistent with a double layer in the Stern-Gouy-Chapman sense, as there is no diffuse layer. The structure is consistent with a capicitative double-layer model, with a very small separation distance between the planes of charge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most common means of gold nanoparticle (AuNP) biofunctionalization involves the manipulation of precursor citrate-capped AuNPs via ligand displacement. However, the molecular-level structural characteristics of the citrate overlayer adsorbed at the aqueous Au interface at neutral pH remain largely unknown. Access to atomistic-scale details of these interfaces will contribute much needed insight into how AuNPs can be manipulated and exploited in aqueous solution. Here, the structures of such citrate overlayers adsorbed at the aqueous Au(111) interface at pH 7 are predicted and characterized using atomistic molecular dynamics simulations, for a range of citrate surface densities. We find that the overlayers are disordered in the surface density range considered, and that many of their key characteristics are invariant with surface density. In particular, we predict the overlayers to have 3-D, rather than 2-D, morphologies, with the anions closest to the gold surface being oriented with their carboxylate groups pointing away from the surface. We predict both striped and island morphologies for our overlayers, depending on the citrate surface density, and in all cases we find bare patches of the gold surface are present. Our simulations suggest that both citrate-gold adsorption and citrate-counterion pairing contribute to the stability of these citrate overlayer morphologies. We also calculate the free energy of adsorption at the aqueous Au(111) interface of a single citrate molecule, and compare this with the corresponding value for a single arginine molecule. These findings enable us to predict the conditions under which ligand displacement of surface-adsorbed citrate by arginine may take place. Our findings represent the first steps toward elucidating a more elaborate, detailed atomistic-scale model relating to the biofunctionalization of citrate-capped AuNPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho foram estudadas as propriedades magnéticas e estruturais de filmes ultrafinos de Fe, Co e Ni produzidos por eletrodeposição sobre substratos de Au(111). Os estágios iniciais de crescimento dos filmes foram estudados por técnicas de caracterização “in-situ”. Uma nova técnica de caracterização do estado magnético de filmes ultrafinos eletrodepositados (EC-AGFM) foi utilizada, mostrando-se uma poderosa ferramenta para o estudo das propriedades magnéticas dos filmes. Outras técnicas, como STM “in-situ”, PMOKE “in-situ”, EXAFS, XRD, RBS foram utilizadas. A análise dos dados revelaram resultados diferentes para os filmes de Fe e Co/Au(111), em comparação aos filmes de Ni/Au(111). Enquanto a anisotropia magnética perpendicular (PMA) foi observada para os filmes de Fe e Co/Au(111), não foi observada para os filmes de Ni/Au(111). Os resultados são interpretados em termos das contribuições para a anisotropia magnética dos filmes. No caso do níquel, a degradação de suas propriedades magnéticas são atribuídas à incorporação de hidrogênio durante a deposição. Os resultados das análises magnética e estrutural são correlacionados a fim de compreender o comportamento das propriedades observadas. Os resultados são comparados aos obtidos por técnicas em vácuo.