861 resultados para Attributed Social Networks, Community Detection
Resumo:
Complex networks analysis is a very popular topic in computer science. Unfortunately this networks, extracted from different contexts, are usually very large and the analysis may be very complicated: computation of metrics on these structures could be very complex. Among all metrics we analyse the extraction of subnetworks called communities: they are groups of nodes that probably play the same role within the whole structure. Communities extraction is an interesting operation in many different fields (biology, economics,...). In this work we present a parallel community detection algorithm that can operate on networks with huge number of nodes and edges. After an introduction to graph theory and high performance computing, we will explain our design strategies and our implementation. Then, we will show some performance evaluation made on a distributed memory architectures i.e. the supercomputer IBM-BlueGene/Q "Fermi" at the CINECA supercomputing center, Italy, and we will comment our results.
Resumo:
Increasing availability (andaffordability) of mobile broadband - In 2015 half of the subscriber base will be in 3G/4G, and 80% in 2020 (27% in 2011) - 7.6 billion mobile users by 2020 (5.4 billion in 2011). Mobile subscribers per 100 inhabitants:99%. Increasing availability (and affordability) of smartphones - In 2020 81% of phones sold globally will be smartphones (2.5 billion) from 26% in 2011 (400 million) - 595 million tablets in 2020 (70 million in 2011)
Resumo:
The appearance of large geolocated communication datasets has recently increased our understanding of how social networks relate to their physical space. However, many recurrently reported properties, such as the spatial clustering of network communities, have not yet been systematically tested at different scales. In this work we analyze the social network structure of over 25 million phone users from three countries at three different scales: country, provinces and cities. We consistently find that this last urban scenario presents significant differences to common knowledge about social networks. First, the emergence of a giant component in the network seems to be controlled by whether or not the network spans over the entire urban border, almost independently of the population or geographic extension of the city. Second, urban communities are much less geographically clustered than expected. These two findings shed new light on the widely-studied searchability in self-organized networks. By exhaustive simulation of decentralized search strategies we conclude that urban networks are searchable not through geographical proximity as their country-wide counterparts, but through an homophily-driven community structure.
Resumo:
This work focuses on the study of the circular migration between America and Europe, particularly in the discussion about knowledge transfer and the way that social networks reconfigure the form of information distribution among people, that due to labor and academic issues have left their own country. The main purpose of this work is to study the impact of social media use in migration flows between Mexico and Spain, more specifically the use by Mexican migrants who have moved for multiple years principally for educational purposes and then have returned to their respective locations in Mexico seeking to integrate themselves into the labor market. Our data collection concentrated exclusively on a group created on Facebook by Mexicans who mostly reside in Barcelona, Spain or wish to travel to the city for economic, educational or tourist reasons. The results of this research show that while social networks are spaces for exchange and integration, there is a clear tendency by this group to "narrow lines" and to look back to their homeland, slowing the process of opening socially in their new context.
Resumo:
As a way to gain greater insights into the operation of online communities, this dissertation applies automated text mining techniques to text-based communication to identify, describe and evaluate underlying social networks among online community members. The main thrust of the study is to automate the discovery of social ties that form between community members, using only the digital footprints left behind in their online forum postings. Currently, one of the most common but time consuming methods for discovering social ties between people is to ask questions about their perceived social ties. However, such a survey is difficult to collect due to the high investment in time associated with data collection and the sensitive nature of the types of questions that may be asked. To overcome these limitations, the dissertation presents a new, content-based method for automated discovery of social networks from threaded discussions, referred to as ‘name network’. As a case study, the proposed automated method is evaluated in the context of online learning communities. The results suggest that the proposed ‘name network’ method for collecting social network data is a viable alternative to costly and time-consuming collection of users’ data using surveys. The study also demonstrates how social networks produced by the ‘name network’ method can be used to study online classes and to look for evidence of collaborative learning in online learning communities. For example, educators can use name networks as a real time diagnostic tool to identify students who might need additional help or students who may provide such help to others. Future research will evaluate the usefulness of the ‘name network’ method in other types of online communities.
Resumo:
Hepatitis C virus (HCV) infects 170 million people worldwide, and is a major public health problem in Brazil, where over 1% of the population may be infected and where multiple viral genotypes co-circulate. Chronically infected individuals are both the source of transmission to others and are at risk for HCV-related diseases, such as liver cancer and cirrhosis. Before the adoption of anti-HCV control measures in blood banks, this virus was mainly transmitted via blood transfusion. Today, needle sharing among injecting drug users is the most common form of HCV transmission. Of particular importance is that HCV prevalence is growing in non-risk groups. Since there is no vaccine against HCV, it is important to determine the factors that control viral transmission in order to develop more efficient control measures. However, despite the health costs associated with HCV, the factors that determine the spread of virus at the epidemiological scale are often poorly understood. Here, we sequenced partial NS5b gene sequences sampled from blood samples collected from 591 patients in Sao Paulo state, Brazil. We show that different viral genotypes entered Sao Paulo at different times, grew at different rates, and are associated with different age groups and risk behaviors. In particular, subtype 1b is older and grew more slowly than subtypes 1a and 3a, and is associated with multiple age classes. In contrast, subtypes 1a and 3b are associated with younger people infected more recently, possibly with higher rates of sexual transmission. The transmission dynamics of HCV in Sao Paulo therefore vary by subtype and are determined by a combination of age, risk exposure and underlying social network. We conclude that social factors may play a key role in determining the rate and pattern of HCV spread, and should influence future intervention policies.
Resumo:
In many real situations, randomness is considered to be uncertainty or even confusion which impedes human beings from making a correct decision. Here we study the combined role of randomness and determinism in particle dynamics for complex network community detection. In the proposed model, particles walk in the network and compete with each other in such a way that each of them tries to possess as many nodes as possible. Moreover, we introduce a rule to adjust the level of randomness of particle walking in the network, and we have found that a portion of randomness can largely improve the community detection rate. Computer simulations show that the model has good community detection performance and at the same time presents low computational complexity. (C) 2008 American Institute of Physics.
Resumo:
Using a random sample of university students to test general strain theory (GST), this study expanded on previous tests of strain theory in two ways. First, situational anger was measured, a construct that had not been used thus far in assessments of general strain. In addition, this research examined the role of social support networks as a conditioning influence on the effects of strain and anger on intentions to commit three types of criminal behavior (serious assault, shoplifting, and driving under the influence of alcohol [DUI]). The results provided mixed support for GST. While the link between anger and crime was confirmed, the nature of that relationship in some cases ran counter to the theory. Moreover, the evidence indicated that the role of social support networks was complex, and varied as a conditioning influence on intentions to engage in criminal activities. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Recensão sobre o livro Cyberscience 2.0 – Research in the Age of Digital Social Networks, Frankfurt, Campus Verlag, 2012, 238 pp. ISBN: 978-3-593-39518-0