84 resultados para Asparagus Racemosus
Resumo:
Addition of L-glutamate caused alkalinization of the medium surrounding Asparagus spreng.ri mesophyll cells. This suggests a H+/L-glutmate symport uptake system for L-glutamate. However stoichiometries of H+/L-glutamate symport into Asparagus cells were much higher than those in other plant systems. Medium alkalinization may also result from a metabolic decarboxylation process. Since L-glutmate is decarboxylated to r-amino butyric acid (SABA) in this system, the origin of medium alkalinization was reconsidered. Suspensions of mechanically isolated and photosyntheically competent Asparagus sprengeri mesophyll cells were used to investigate the H+/L-glutamate symport system, SABA production, GABA transport, and the origin of L-glutamate dependent medium alkalinization. The major results obtained are summarized as follows: 1. L-Glutamate and GABA were the second or third most abundant amino acids in these cells. Cellular concentrations of L-glutamate were 1.09 mM and 1.31 mM in the light and dark, respectively. Those of SABA were 1.23 mM and 1.17 mM in the light and dark, respectively. 2. Asparagine was the most abundant amino acid in xylem sap and comprised 54 to 68 1. of the amino acid pool on a molar basis. GABA was the second most abundant amino acid and represented 10 to 11 1. of the amino acid pool. L-Slutamate was a minor component. 3. A 10 minute incubation with 1 mM L-glutamate increased the production of GABA in the medium by 2,743 7. and 2,241 7. in the light and dark, respectively. 4. L-Glutamate entered the cells prior to decarboxylation. 5. There was no evidence for a H+/GABA symport process • 6. GABA was produced by loss of carbon-1 of L-glutamate. 7. The specific activity of newly synthesized labeled GABA suggests that it is not equilibrated with a storage pool of GABA. 8. The mechanism of GABA efflux appears to be a passive process. 9. The evidence indicates that the origin of L-glutamate dependent medium alkalinization is a H+/L-glutamate symport not an extracellular decarboxylation. The possible role of GABA production in regulating cytoplasmic pH and L-glutamate levels during rapid electrogenic H+/L-glutamate symport is discussed.
Resumo:
Asparagus: A Horticultural Ballet was a live performance and film narrating the rise of capital in the medium of asparagus. The project stemmed from an obscure reference to an art piece of the same name by Waw Pierogi of the band xex. However, the its re-enactment had little to do with the original exploration of the growth and branching patterns of the asparagus plant. Instead, a rigid choreography inspired by Oskar Schlemmer's Triadic Ballet and based on Karl Marx's Capital dictated the movements of six performers in asparagus costumes. Bringing together the organic and the geometric, the ballet investigated the transition from the Fordist assembly line to immaterial labour through a reanimation of modernist abstraction. Being itself the story of abstraction, Capital shows how human relationships are replaced by those between commodities in the joyless grind of endless accumulation. This process results in the transcendent mythical figure of capital, which frames, transfigures and even produces the natural world. Asparagus: A Horticultural Ballet was produced in collaboration with Montreal based band Les Georges Leningrad and commissioned by The Showroom Gallery, London. It was presented live at Conway Hall in London on 6.3.07 and at the Montreal Biennale at SAT on 12.5.07. The performance was accompanied by a film at the Showroom gallery and preceded by a production residency at the Pump House Gallery. The film has subsequently been shown at The Golden Thread Gallery, Bluecoat Liverpool and as part of A-Lot-Ment in Portsmouth. Props from Asparagus: A Horticultural Ballet, were included in The Eagle Document at the Stephen Lawrence Gallery, London.
Resumo:
Includes bibliography.
Resumo:
Von D. Grothe
Resumo:
Von A. Sliwa
Resumo:
Peru is the one of the most important exporters of asparagus in the world. Its export volume of fresh asparagus is ranked number one, and its export volume of preserved asparagus number two, globally. The objective of this paper is to provide an overview of the recent trends in asparagus production and exports around the world and to analyze factors in the development of the Peruvian asparagus industry. The production of asparagus has spread geographically. The center of its production used to be in the principal consuming countries, such as France, Germany and the United States. Afterward, it spread to neighboring countries such as Spain and Mexico where production factors such as climate and labor costs are favorable. After the rise and fall of Taiwan as a major preserved white asparagus exporter, China and Peru replaced its position. Finally, in recent years, Peru expanded its fresh green asparagus exports to the U.S. market by taking advantage of the increasing demand for fresh vegetables and supplying produce in seasons when neither U.S. nor Mexican producers can harvest. In addition to the changing factors in the international market, there are several factors in the development of the industry: high yields of produce due to favorable climatic and soil conditions; the introduction of the drip irrigation system, which enabled desert cultivation; the integration of production and exports, which is indispensable for fresh produce exports; and the collective efforts of the industry with help from the public sector.
Resumo:
Asparagus is the star product among non-traditional agricultural exports (NTAXs) in Peru. The export of preserved asparagus has expanded since the end of the 1980s. Although there was some stagnation in the mid-1990s, exports of fresh asparagus have expanded rapidly since the end of the 1990s. Now, the export of both preserved and fresh asparagus constitute the second most important agricultural export in Peru after coffee. Besides the change in demand on the international market, the important factor behind the shift from preserved to fresh asparagus is the change in the supply structure of asparagus. In the case of preserved asparagus, Peruvian exports expanded because of Peru’s competitiveness, which originated from favorable production factors, such as climate, soil and labor. However, because of the growing presence of Chinese products on the international market, Peru’s products lost their competitiveness. In the case of fresh asparagus, the investment of agricultural corporations in production and their innovation in integrating different economic processes from the point of production to the time of export built a successful supply structure that is suited for the export of fresh agricultural produce.
Resumo:
Proliferation of dispersed plant cells in culture is strictly dependent on cell density, and cells in a low-density culture can only grow in the presence of conditioned medium (CM). No known plant hormones have been able to substitute for CM. To quantify the mitogenic activity of CM, we examined conditions for the assay system using mechanically dispersed mesophyll cells of Asparagus officinalis L. and established a highly sensitive bioassay method. By use of this method, the mitogenic activity of CM prepared from asparagus cells was characterized: it was heat-stable, susceptible to pronase digestion, and resistant to glycosidase treatment. On the basis of these results, the mitogenic activity in CM was purified 10(7)-fold by column chromatography, and two factors named phytosulfokine-alpha and -beta (PSK-alpha and PSK-beta) were obtained. By amino acid sequence analysis and mass spectrometry, the structures of these two factors were determined to be sulfated pentapeptide (H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH) and sulfated tetrapeptide (H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-OH). PSK-alpha and PSK-beta were prepared by chemical synthesis and enzymatic sulfation. The synthetic peptides exhibited the same activity as the natural factors, confirming the structure for PSK-alpha and PSK-beta mentioned above. This is the first elucidation of the structure of a conditioned medium factor required for the growth of low-density plant cell cultures.
Resumo:
Mode of access: Internet.
Resumo:
Errata: p. [xiii].
Resumo:
Cover title.
Resumo:
Saline Valley Farms was an experiment in cooperative farming and living begun in 1932 by Harold S. Gray.