784 resultados para Ascites microenvironment
Resumo:
Background Ascites, the most frequent complication of cirrhosis, is associated with poor prognosis and reduced quality of life. Recurrent hospital admissions are common and often unplanned, resulting in increased use of hospital services. Aims To examine use of hospital services by patients with cirrhosis and ascites requiring paracentesis, and to investigate factors associated with early unplanned readmission. Methods A retrospective review of the medical chart and clinical databases was performed for patients who underwent paracentesis between October 2011 and October 2012. Clinical parameters at index admission were compared between patients with and without early unplanned hospital readmissions. Results The 41 patients requiring paracentesis had 127 hospital admissions, 1164 occupied bed days and 733 medical imaging services. Most admissions (80.3%) were for management of ascites, of which 41.2% were unplanned. Of those eligible, 69.7% were readmitted and 42.4% had an early unplanned readmission. Twelve patients died and nine developed spontaneous bacterial peritonitis. Of those eligible for readmission, more patients died (P = 0.008) and/or developed spontaneous bacterial peritonitis (P = 0.027) if they had an early unplanned readmission during the study period. Markers of liver disease, as well as haemoglobin (P = 0.029), haematocrit (P = 0.024) and previous heavy alcohol use (P = 0.021) at index admission, were associated with early unplanned readmission. Conclusion Patients with cirrhosis and ascites comprise a small population who account for substantial use of hospital services. Markers of disease severity may identify patients at increased risk of early readmission. Alternative models of care should be considered to reduce unplanned hospital admissions, healthcare costs and pressure on emergency services.
Resumo:
Tumour microenvironment greatly influences the development and metastasis of cancer progression. The development of three dimensional (3D) culture models which mimic that displayed in vivo can improve cancer biology studies and accelerate novel anticancer drug screening. Inspired by a systems biology approach, we have formed 3D in vitro bioengineered tumour angiogenesis microenvironments within a glycosaminoglycan-based hydrogel culture system. This microenvironment model can routinely recreate breast and prostate tumour vascularisation. The multiple cell types cultured within this model were less sensitive to chemotherapy when compared with two dimensional (2D) cultures, and displayed comparative tumour regression to that displayed in vivo. These features highlight the use of our in vitro culture model as a complementary testing platform in conjunction with animal models, addressing key reduction and replacement goals of the future. We anticipate that this biomimetic model will provide a platform for the in-depth analysis of cancer development and the discovery of novel therapeutic targets.
Resumo:
Two-dimensional (2D) substrates cannot accurately mimic the complex matrix of native TME, whereas 3D models can recapitulate the natural tumour progression in vitro. As part of the tumour stroma, fibroblasts and endothelial cells (ECs) are well-known to not only support tumour growth but also to reduce the efficacy of anti-cancer drugs. Particularly, ECs are involved in the process of tumour vascularisation which represents a crucial step in the progression of cancer. Most of the previous studies are carried out in animal models or 2D cultures; hence, a detailed evaluation of experimental data is poor. To address this issue, we aim to develop a novel 3D in vitro approach, to mimic native tumour angiogenesis in 3D and to quantify the developed vascular network.
Resumo:
Prostate cancer is a leading cause of male cancer-related death and novel therapies are required that prevent progression to terminal disease. This study identified novel protein targets and cell signalling pathways regulated by the prostate cancer-associated protease, kallikrein-related peptidase 4, highlighting it as a promising target for anti-cancer therapy. Seventy-five novel targets and key signalling pathways were identified to be regulated by the protease, suggesting novel functions in remodelling tumour tissue to enable prostate cancer progression.
Resumo:
Prostate cancer is the most commonly diagnosed malignancy in men and advanced disease is incurable. Model systems are a fundamental tool for research and many in vitro models of prostate cancer use cancer cell lines in monoculture. Although these have yielded significant insight they are inherently limited by virtue of their two-dimensional (2D) growth and inability to include the influence of tumour microenvironment. These major limitations can be overcome with the development of newer systems that more faithfully recreate and mimic the complex in vivo multi-cellular, three-dimensional (3D) microenvironment. This article presents the current state of in vitro models for prostate cancer, with particular emphasis on 3D systems and the challenges that remain before their potential to advance our understanding of prostate disease and aid in the development and testing of new therapeutic agents can be realised.
A hybrid cellular automata model of multicellular tumour spheroid growth in hypoxic microenvironment
Resumo:
A three-dimensional hybrid cellular automata (CA) model is developed to study the dynamic process of multicellular tumour spheroid (MTS) growth by introducing hypoxia as an important microenvironment factor which influences cell migration and cell phenotype expression. The model enables us to examine the effects of different hypoxic environments on the growth history of the MTS and to study the dynamic interactions between MTS growth and chemical environments. The results include the spatial distribution of different phenotypes of tumour cells and associated oxygen concentration distributions under hypoxic conditions. The discussion of the model system responses to the varied hypoxic conditions reveals that the improvement of the resistance of tumour cells to a hypoxic environment may be important in the tumour normalization therapy.
Resumo:
Background Vascular endothelial growth factor (VEGF) is known to play a major role in angiogenesis. A soluble form of Flt-1, a VEGF receptor, is potentially useful as an antagonist of VEGF, and accumulating evidence suggests the applicability of sFlt-1 in tumor suppression. In the present study, we have developed and tested strategies targeted specifically to VEGF for the treatment of ascites formation.Methods As an initial strategy, we produced recombinant sFLT-1 in the baculovirus expression system and used it as a trap to sequester VEGF in the murine ascites carcinoma model. The effect of the treatment on the weight of the animal, cell number, ascites volume and proliferating endothelial cells was studied. The second strategy involved, producing Ehrlich ascites tumor (EAT) cells stably transfected with vectors carrying cDNA encoding truncated form of Flt-1 and using these cells to inhibit ascites tumors in a nude mouse model. Results The sFLT-1 produced by the baculovirus system showed potent antiangiogenic activity as assessed by rat cornea and tube formation assay. sFLT-1 treatment resulted in reduced peritoneal angiogenesis with a concomitant decrease in tumor cell number, volume of ascites, amount of free VEGF and the number of invasive tumor cells as assayed by CD31 staining. EAT cells stably transfected with truncated form of Flt-1 also effectively reduced the tumor burden in nude mice transplanted with these cells, and demonstrated a reduction in ascites formation and peritoneal angiogenesis. Conclusions The inhibition of peritoneal angiogenesis and tumor growth by sequestering VEGF with either sFlt-1 gene expression by recombinant EAT cells or by direct sFLT-1 protein therapy is shown to comprise a potential therapy. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Chromomycin A3, mithramycin, olivomycin and actinomycin D, four antitumor antibiotics inhibit growth of Yoshida ascites sarcoma (YAS). The antibiotic treated tumor-free rats exhibit antitumor immunity as judged by rejection of subsequent tumor transplant. The lymphocytes from immune rats are able to inhibit tumor growth in syngenic animals.
Resumo:
A purified antitumor protein from the proteinaceous crystal of Bacillus thuringiensis subsp. thuringiensis inhibits the growth of Yoshida ascites sarcoma both in vivo and in vitro. Exogenous respiration of the tumor cells was unaffected by the protein at a concentration as high as 500 µg/ml. The antitumor protein inhibits the uptake and incorporation of labeled precursors into macromolecules. However, the ratio of incorporation over uptake is not affected by the protein. Further, the protein brings about the leakage of 260-nm-absorbing material, proteins, and 32P-labeled cellular constituents from the Yoshida ascites sarcoma cells. The results show that the action of the antitumor protein appears to alter the cellular permeability of the tumor cells.
Resumo:
Kallikrein-related peptidase 4 (KLK4) is a protease with elevated production in prostate cancer versus benign tissue. KLK4 expression is associated with prostate cancer risk, and its activity favours tumour progression through increasing cell motility and growth. Importantly, over-production of KLK4 in prostate glandular cells precedes tumour formation, positioning the enzyme to play a role in early remodelling of the tumour microenvironment, a process essential for tumour growth. We sought to identify the proteins and downstream signalling pathways targeted by KLK4 activity, to define its role in tumour microenvironment remodelling and evaluate the efficacy of KLK4 inhibition as a cancer therapy.
Resumo:
The antitumor activity of Image -asparagine amidohydrolases (EC 3.5.1.1) from Mycobacterium tuberculosis H37Rv and H37Ra strains has been tested on Yoshida ascites sarcoma in rats. The enzyme specific to M. tuberculosis H37Ra but not to H37Rv has proved to be effective in inhibiting the growth of the sarcoma. Comparative studies on the activity of this enzyme with that of similar enzyme from Escherichia coli B, has shown that at the same levels the former is more effective than the latter. Long-lived immunity to this tumor in A/IISc Wistar rats following treatment of tumor bearing animals with M. tuberculosis H37Ra, pH 9.6 Image -asparaginase has been observed. Immunity in these rats was demonstrated by tumor rejection and detection of humoral antibodies in the sera to the antigen of the cell-free extract of the tumor. The enzyme was ineffective in inhibiting fibrosarcoma in mice at the dose levels tested.
Resumo:
Follicular lymphoma (FL) is the second most common non-Hodgkin lymphoma. It is an indolent and clinically heterogeneous disease, which is generally considered incurable. Currently, immunochemotherapy has significantly improved the outcome of FL patients. This is based on the combination of rituximab, a monoclonal anti-CD20 antibody, with chemotherapy, and is used at present as a standard first-line therapy in FL. Thus far, however, patients have been selected for treatment based on clinical risk factors and indices that were developed before the rituximab era. Therefore, there is a growing need to understand the molecular mechanisms underlying the disease, which would not only provide information to predict survival in the rituximab era, but also enable the design of more targeted therapeutic strategies. In this study, our aim was to identify genes predicting the outcome in FL patients treated with immunochemotherapy. Thus, we performed a cDNA microarray with 24 FL patients. When gene expression differences from diagnostic tumour samples were related to the clinical outcome, we identified novel genes with a prognostic impact on survival. The expression of selected genes was further characterized with quantitative PCR and immunohistochemistry (IHC). Interestingly, the prognostic influence of these genes was often associated with their expression in non-malignant cells instead of tumour cells. Based on the observed gene expression patterns, we analyzed the abundance and prognostic value of non-malignant immune cells in 95-98 FL patients treated with immunochemotherapy. We observed that a high content of tumour-associated macrophages was a marker of a favourable prognosis. In contrast, the accumulation of mast cells correlated with a poor outcome and was further associated with tumour vascularity. Increased microvessel density also correlated with an inferior outcome. In addition, we used the same microarray data with a systems biology approach to identify signalling pathways or groups of genes capable of separating patients with favourable or adverse outcomes. Among the transcripts, there were many genes associated with signal transducers and activators of the transcription (STAT5a) pathway. When IHC was used as validation, STAT5a expression was mostly observed in T-cells and follicular dendritic cells, and expression was found to predict a favourable outcome. In cell cultures, rituximab was observed to induce the expression of STAT5a-associated interleukins in human lymphoma cell lines, which might provide a possible link for the cross-talk between rituximab-induced FL cells and their microenvironment. In conclusion, we have demonstrated that the microenvironment has a prognostic role in FL patients treated with immunochemotherapy. The results also address the importance of re-evaluating the prognostic markers in the rituximab era of lymphoma therapies.
Resumo:
Owing to the reduced co-relationship between conventional flat Petri dish culture (two-dimensional) and the tumour microenvironment, there has been a shift towards three-dimensional culture systems that show an improved analogy to the same. In this work, an extracellular matrix (ECM)-mimicking three-dimensional scaffold based on chitosan and gelatin was fabricated and explored for its potential as a tumour model for lung cancer. It was demonstrated that the chitosan-gelatin (CG) scaffolds supported the formation of tumoroids that were similar to tumours grown in vivo for factors involved in tumour-cell-ECM interaction, invasion and metastasis, and response to anti-cancer drugs. On the other hand, the two-dimensional Petri dish surfaces did not demonstrate gene-expression profiles similar to tumours grown in vivo. Further, the three-dimensional CG scaffolds supported the formation of tumoroids, using other types of cancer cells such as breast, cervix and bone, indicating a possible wider potential for in vitro tumoroid generation. Overall, the results demonstrated that CG scaffolds can be an improved in vitro tool to study cancer progression and drug screening for solid tumours.