993 resultados para Antimicrobial protection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A crustinlike antimicrobial peptide from the haemocytes of giant tiger shrimp, Penaeus monodon was partially characterized at the molecular level and phylogenetic analysis was performed. The partial coding sequence of 299 bp and 91 deduced amino acid residues possessed conserved cysteine residues characteristic of the shrimp crustins. Phylogenetic tree and sequence comparison clearly confirmed divergence of this crustinlike AMP from other shrimp crustins. The differential expression of the crustinlike AMP in P. monodon in response to the administration of various immunostimulants viz., two marine yeasts (Candida haemulonii S27 and Candida sake S165) and two bglucan isolates (extracted from C. haemulonii S27 and C. sake S165) were noted during the study. Responses to the application of two grampositive probiotic bacteria (Bacillus MCCB101 and Micrococcus MCCB104) were also observed. The immune profile was recorded preand postchallenge white spot syndrome virus (WSSV) by semiquantitative RTPCR. Expressions of seven WSSV genes were also observed for studying the intensity of viral infection in the experimental animals. The crustinlike AMP was found to be constitutively expressed in the animal and a significant downregulation could be noted postchallenge WSSV. Remarkable downregulation of the gene was observed in the immunostimulant fed animals prechallenge followed by a significant upregulation postchallenge WSSV. Tissuewise expression of crustinlike AMP on administration of C. haemulonii and Bacillus showed maximum transcripts in gill and intestine. The marine yeast, C. haemulonii and the probiotic bacteria, Bacillus were found to enhance the production of crustinlike AMP and confer significant protection to P. monodon against WSSV infection

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties andmolecular structure ofHarriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H2O2via the action of added metal(II) ions. H2O2 generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin–iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arthropods display different mechanisms to protect themselves against infections, among which antimicrobial peptides (AMPs) play an important role, acting directly against invader pathogens. We have detected several factors with inhibitory activity against Candida albicans and Micrococcus luteus on the surface and in homogenate of eggs of the tick Rhipicephalus (Boophilus) microplus. One of the anti-M. luteus factors of the egg homogenate was isolated to homogeneity. Analysis by electrospray mass spectrometry (ESI-MS) revealed that it corresponds to microplusin, an AMP previously isolated from the cell-free hemolymph of X (B.) microplus. Reverse transcription (RT) quantitative polymerase chain reactions (qPCR) showed that the levels of microplusin mRNA gradually increase along ovary development, reaching an impressive highest value three days after the adult females have dropped from the calf and start oviposition. Interestingly, the level of microplusin mRNA is very low in recently laid eggs. An enhance of microplusin gene expression in eggs is observed only nine days after the onset of oviposition, achieving the highest level just before the larva hatching, when the level of expression decreases once again. Fluorescence microscopy analysis using an anti-microplusin serum revealed that microplusin is present among yolk granules of oocytes as well as in the connecting tube of ovaries. These results, together to our previous data. suggest that microplusin may be involved not only in protection of adult female hemocele, but also in protection of the female reproductive tract and embryos, what points this AMP as a considerable target for development of new methods to control R. (B.) microplus as well as the vector-borne pathogens. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are essential for the innate immune system of eukaryotes, imparting protection against pathogens and their proliferation in host organisms. The recent interest in AMPs as active materials in bionanostructures is due to the properties shown by these biological molecules, such as the presence of an alpha-helix structure and distribution of positive charges along the chain. In this study the antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines. The leishmanicidal activity of DS 01 was confirmed using kinetic essays, in which DS 01 promoted death of all metacyclic promastigote cells in 45 minutes. Surprisingly, the immobilized DS 01 molecules displayed electroactivity, as revealed by electrochemical experiments, in which an oxidation peak at about 0.61 V was observed for a DS 01 monolayer deposited on top of a conductive electrode. Such electroactivity was used to investigate the sensing abilities of the nanostructured films toward Leishmania. We observed an increase in the oxidation current as a function of number of Leishmania cells in the electrolytic solution at concentrations down to 10(3) cells/mL. The latter is indicative that the use of AMPs immobilized in electroactive nanostructured films may be of interest for applications in the pharmaceutical industry and diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteria, yeasts, and viruses are rapidly killed on metallic copper surfaces, and the term "contact killing" has been coined for this process. While the phenomenon was already known in ancient times, it is currently receiving renewed attention. This is due to the potential use of copper as an antibacterial material in health care settings. Contact killing was observed to take place at a rate of at least 7 to 8 logs per hour, and no live microorganisms were generally recovered from copper surfaces after prolonged incubation. The antimicrobial activity of copper and copper alloys is now well established, and copper has recently been registered at the U.S. Environmental Protection Agency as the first solid antimicrobial material. In several clinical studies, copper has been evaluated for use on touch surfaces, such as door handles, bathroom fixtures, or bed rails, in attempts to curb nosocomial infections. In connection to these new applications of copper, it is important to understand the mechanism of contact killing since it may bear on central issues, such as the possibility of the emergence and spread of resistant organisms, cleaning procedures, and questions of material and object engineering. Recent work has shed light on mechanistic aspects of contact killing. These findings will be reviewed here and juxtaposed with the toxicity mechanisms of ionic copper. The merit of copper as a hygienic material in hospitals and related settings will also be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aminoglycosides are commonly prescribed antibiotics with deleterious side effects to the inner ear. Due to their popular application as a result of their potent antimicrobial activities, many efforts have been undertaken to prevent aminoglycoside ototoxicity. Over the years, understanding of the antimicrobial as well as ototoxic mechanisms of aminoglycosides has increased. These mechanisms are reviewed in regard to established and potential future targets of hair cell protection.