890 resultados para Antidepressant-like activity
Resumo:
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide's primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Luciferyl adenylate, the key intermediate in beetle bioluminescence, is produced through adenylation of D-luciferin by beetle luciferases and also by mealworm luciferase-like enzymes which produce a weak red chemiluminescence. However, luciferyl adenylate is only weakly chemiluminescent in water at physiological pH and it is unclear how efficient bioluminescence evolved from its weak chemiluminescent properties. We found that bovine serum albumin (BSA) and neutral detergents enhance luciferyl adenylate chemiluminescence by three orders of magnitude, simulating the mealworm luciferase-like enzyme chemiluminescence properties. These results suggest that the beetle protoluciferase activity arose as an enhanced luciferyl adenylate chemiluminescence in the protein environment of the ancestral AMP-ligase. The predominance of luciferyl adenylate chemiluminescence in the red region under most conditions suggests that red luminescence is a more primitive condition that characterized the original stages of protobioluminescence, whereas yellow-green bioluminescence may have evolved later through the development of a more structured and hydrophobic active site. Copyright © 2006 John Wiley & Sons, Ltd.
Inhibition of iNOS induces antidepressant-like effects in mice: Pharmacological and genetic evidence
Resumo:
Recent evidence has suggested that systemic administration of non-selective NOS inhibitors induces antidepressant-like effects in animal models. However, the precise involvement of the different NOS isoforms (neuronal-nNOS and inducible-iNOS) in these effects has not been clearly defined yet. Considering that mediators of the inflammatory response, that are able to induce iNOS expression, can be increased by exposure to stress, the aim of the present study was to investigate iNOS involvement in stress-induced behavioral consequences in the forced swimming test (FST), an animal model sensitive to antidepressant drugs. Therefore, we investigated the effects induced by systemic injection of aminoguanidine (preferential iNOS inhibitor), 1400W (selective iNOS inhibitor) or n-propyl-L-arginine (NPA, selective nNOS inhibitor) in mice submitted to the FST. We also investigated the behavior of mice with genetic deletion of iNOS (knockout) submitted to the FST. Aminoguanidine significantly decreased the immobility time (IT) in the FST. 1400W but not NPA, when administered at equivalent doses considering the magnitude of their Ki values for iNOS and nNOS, respectively, reduced the IT, thus suggesting that aminoguanidine-induced effects would be due to selective iNOS inhibition. Similarly, iNOS KO presented decreased IT in the FST when compared to wild-type mice. These results are the first to show that selective inhibition of iNOS or its knockdown induces antidepressant-like effects, therefore suggesting that iNOS-mediated NO synthesis is involved in the modulation of stress-induced behavioral consequences. Moreover, they further support NO involvement in the neurobiology of depression. This article is part of a Special Issue entitled 'Anxiety and Depression'. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Pergularain e I, a cysteine protease with thrombin-like activity, was purified by ion exchange chromatography from the latex of Pergularia extensa. Its homogeneity was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), native PAGE and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of pergularain e I by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) was found to be 23.356 kDa and the N-terminal sequence is L-P-H-D-V-E. Pergularain e I is a glycoprotein containing approximately 20% of carbohydrate. Pergularain e I constituted 6.7% of the total protein with a specific activity of 9.5 units/mg/min with a 2.11-fold increased purity. Proteolytic activity of the pergularain e I was completely inhibited by iodoacetic acid (IAA). Pergularain e I exhibited procoagulant activity with citrated plasma and fibrinogen similar to thrombin. Pergularain e I increases the absorbance of fibrinogen solution in concentration-dependent and time-dependent manner. At 10 microg concentration, an absorbance of 0.48 was reached within 10 min of incubation time. Similar absorbance was observed when 0.2 NIH units of thrombin were used. Thrombin-like activity of pergularain e I is because of the selective hydrolysis of A alpha and B beta chains of fibrinogen and gamma-chain was observed to be insusceptible to hydrolysis. Molecular masses of the two peptide fragments released from fibrinogen due to the hydrolysis by pergularain e I at 5-min incubation time were found to be 1537.21 and 1553.29 and were in close agreement with the molecular masses of 16 amino acid sequence of fibrinopeptide A and 14 amino acid sequence of fibrinopeptide B, respectively. Prolonged fibrinogen-pergularain e I incubation releases additional peptides and their sequence comparison of molecular masses of the released peptides suggested that pergularain e I hydrolyzes specifically after arginine residues.
Resumo:
A major myonecrotic zinc containing metalloprotease 'malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu- Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A? followed by B subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.
Resumo:
AIM: Chemical decontamination increases the availability of bone grafts; however, it is unclear whether antiseptic processing changes the biological activity of bone. MATERIALS AND METHODS: Bone chips were incubated with 4 different antiseptic solutions including (1) povidone-iodine (0.5%), (2) chlorhexidine diguluconate (0.2%), (3) hydrogen peroxide (1%) and (4) sodium hypochlorite (0.25%). After 10 minutes of incubation, changes in the capacity of the bone-conditioned medium to modulate gene expression of gingival fibroblasts was investigated. RESULTS: Conditioned medium obtained from freshly prepared bone chips increased the expression of TGF-β target genes interleukin 11 (IL11), proteoglycan4 (PRG4), NADPH oxidase 4 (NOX4), and decreased the expression of adrenomedullin (ADM), and pentraxin 3 (PTX3) in gingival fibroblasts. Incubation of bone chips with 0.2% chlorhexidine, followed by vigorously washing resulted in a bone-conditioned medium with even higher expression of IL11, PRG4, and NOX4. These findings were also found with a decrease in cell viability and an activation of apoptosis signaling. Chlorhexidine alone, at low concentrations, increased IL11, PRG4 and NOX4 expression, independent of the TGF-β receptor I kinase activity. In contrast, 0.25% sodium hypochlorite almost entirely abolished the activity of bone-conditioned medium, while the other two antiseptic solutions, 1% hydrogen peroxide and 0.5% povidone-iodine, had relatively no impact, respectively. CONCLUSION: These in vitro findings demonstrate that incubation of bone chips with chlorhexidine differentially affects the activity of the respective bone-conditioned medium compared to the other antiseptic solutions. The data further suggest that the main effects are caused by chlorhexidine remaining in the bone-conditioned medium after repeated washing of the bone chips. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved. KEYWORDS: Autografts; TGF-β; antiseptic solution; bone; bone conditioned medium; bone supernatant; chlorhexidine; hydrogen peroxide; povidone-iodine; sodium hypochlorite
Resumo:
Nm23 genes, which encode nucleoside diphosphate kinases, have been implicated in suppressing tumor metastasis. The motility of human breast carcinoma cells can be suppressed by transfection with wild-type nm23-H1, but not by transfections with two nm23-H1 mutants, nm23-H1S12OG and nm23-H1P96S. Here we report that nm23-H1 can transfer a phosphate from its catalytic histidine to aspartate or glutamate residues on 43-kDa membrane proteins. One of the 43-kDa membrane proteins was not phosphorylated by either nm23-H1P96S or nm23-H1S120G, and another was phosphorylated much more slowly by nm23-H1P96S and by nm23-H1S120G than by wild-type nm23-H1. Nm23-H1 also can transfer phosphate from its catalytic histidine to histidines on ATP-citrate lyase and succinic thiokinase. The rates of phosphorylation of ATP-citrate lyase by nm23-H1S120G and nm23-H1P96S were similar to that by wild-type nm23-H1. The rate of phosphorylation of succinic thiokinase by nm23-H1S120 was similar to that by wild-type nm23-H1, and the rate of phosphorylation of succinic thiokinase by nm23-H1P96S was about half that by wild-type nm23-H1. Thus, the transfer of phosphate from nm23-H1 to aspartates or glutamates on other proteins appears to correlate better with the suppression of motility than does the transfer to histidines.
Resumo:
The brain serotonin (5-hydroxytryptamine; 5-HT) system is a powerful modulator of emotional processes and a target of medications used in the treatment of psychiatric disorders. To evaluate the contribution of serotonin 5-HT1A receptors to the regulation of these processes, we have used gene-targeting technology to generate 5-HT1A receptor-mutant mice. These animals lack functional 5-HT1A receptors as indicated by receptor autoradiography and by resistance to the hypothermic effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Homozygous mutants display a consistent pattern of responses indicative of elevated anxiety levels in open-field, elevated-zero maze, and novel-object assays. Moreover, they exhibit antidepressant-like responses in a tail-suspension assay. These results indicate that the targeted disruption of the 5-HT1A receptor gene leads to heritable perturbations in the serotonergic regulation of emotional state. 5-HT1A receptor-null mutant mice have potential as a model for investigating mechanisms through which serotonergic systems modulate affective state and mediate the actions of psychiatric drugs.
Resumo:
The effects of pantethine, glutathione, and selected chemical reagents on the anti-aggregation activity of α-crystallin was evaluated. Protein aggregation was monitored by light scattering of solutions of denatured βL-crystallin or alcohol dehydrogenase (ADH). The ratios of βL-crystallin/α-crystallin and ADH/α-crystallin were adjusted so that partial inhibition of protein aggregation at 60°C or 37°C, respectively, was observed and modulation of the chaperone action of α-crystallin could be evaluated easily with selected endogenous metabolites. Enhancement of the anti-aggregation activity in the βL-crystallin assay was strongest with pantethine, which appeared to interact with α-crystallin. Enhancement of the anti-aggregation activity in the ADH assay was strongest with glutathione which appeared to interact with ADH. The results indicated that the products of common metabolic pathways can modulate the chaperone-like effects of α-crystallin on protein aggregation.
Resumo:
We have detected an endoribonucleolytic activity in human cell extracts that processes the Escherichia coli 9S RNA and outer membrane protein A (ompA) mRNA with the same specificity as RNase E from E. coli. The human enzyme was partially purified by ion-exchange chromatography, and the active fractions contained a protein that was detected with antibodies shown to recognize E. coli RNase E. RNA containing four repeats of the destabilizing motif AUUUA and RNA from the 3' untranslated region of human c-myc mRNA were also found to be cleaved by E. coli RNase E and its human counterpart in a fashion that may suggest a role of this activity in mammalian mRNA decay. It was also found that RNA containing more than one AUUUA motif was cleaved more efficiently than RNA with only one or a mutated motif. This finding of a eukaryotic endoribonucleolytic activity corresponding to RNase E indicates an evolutionary conservation of the components of mRNA degradation systems.
Resumo:
353 págs.
Resumo:
Depression is among the leading causes of disability worldwide. Currently available antidepressant drugs have unsatisfactory efficacy, with up to 60% of depressed patients failing to respond adequately to treatment. Emerging evidence has highlighted a potential role for the efflux transporter P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), in the aetiology of treatment-resistant depression. In this thesis, the potential of P-gp inhibition as a strategy to enhance the brain distribution and pharmacodynamic effects of antidepressant drugs was investigated. Pharmacokinetic studies demonstrated that administration of the P-gp inhibitors verapamil or cyclosporin A (CsA) enhanced the BBB transport of the antidepressants imipramine and escitalopram in vivo. Furthermore, both imipramine and escitalopram were identified as transported substrates of human P-gp in vitro. Contrastingly, human P-gp exerted no effect on the transport of four other antidepressants (amitriptyline, duloxetine, fluoxetine and mirtazapine) in vitro. Pharmacodynamic studies revealed that pre-treatment with verapamil augmented the behavioural effects of escitalopram in the tail suspension test (TST) of antidepressant-like activity in mice. Moreover, pre-treatment with CsA exacerbated the behavioural manifestation of an escitalopram-induced mouse model of serotonin syndrome, a serious adverse reaction associated with serotonergic drugs. This finding highlights the potential for unwanted side-effects which may occur due to increasing brain levels of antidepressants by P-gp inhibition, although further studies are needed to fully elucidate the mechanism(s) at play. Taken together, the research outlined in this thesis indicates that P-gp may restrict brain concentrations of escitalopram and imipramine in patients. Moreover, we show that increasing the brain distribution of an antidepressant by P-gp inhibition can result in an augmentation of antidepressant-like activity in vivo. These findings raise the possibility that P-gp inhibition may represent a potentially beneficial strategy to augment antidepressant treatment in clinical practice. Further studies are now warranted to evaluate the safety and efficacy of this approach.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)