758 resultados para Ant-based algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to assess a pharmacokinetic algorithm to predict ketamine plasma concentration and drive a target-controlled infusion (TCI) in ponies. Firstly, the algorithm was used to simulate the course of ketamine enantiomers plasma concentrations after the administration of an intravenous bolus in six ponies based on individual pharmacokinetic parameters obtained from a previous experiment. Using the same pharmacokinetic parameters, a TCI of S-ketamine was then performed over 120 min to maintain a concentration of 1 microg/mL in plasma. The actual plasma concentrations of S-ketamine were measured from arterial samples using capillary electrophoresis. The performance of the simulation for the administration of a single bolus was very good. During the TCI, the S-ketamine plasma concentrations were maintained within the limit of acceptance (wobble and divergence <20%) at a median of 79% (IQR, 71-90) of the peak concentration reached after the initial bolus. However, in three ponies the steady concentrations were significantly higher than targeted. It is hypothesized that an inaccurate estimation of the volume of the central compartment is partly responsible for that difference. The algorithm allowed good predictions for the single bolus administration and an appropriate maintenance of constant plasma concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel means to locate and treat lower gastrointestinal bleeding (lGB) allow to reduce the rate of required surgical interventions and help to limit the extend of resection. The risk stratification of patients with lGB is the primary step of our recommended treatment algorithm. Accordingly, risk stratifying instruments, which are only partly validated up to now, are gaining significance in lGB. Whereas, gastro-duodenoscopy and colonoscopy prior to angiography or scintigraphy are established diagnostic tools, capsule enteroscopy offers a novel approach to hemodynamic stable patients with lGB that are difficult to localize. With its every increasing sensitivity, Angio-Computer Tomography is likely to replace scintigraphy and diagnostic angiography in the very near future. In addition, recent advances in superselective microembolisation have been shown to have the potential rendering surgical interventions in a majority of patients with acute lGB unnecessary. The extend of required surgical resection is largely dependent on the success to localize the bleeding source of prior diagnostics. Only if the source is identified, a limited segmental resection should be performed. Should surgery be required, we suggest to maintain the effort to localize the bleeding, either by prior laparoscopy and/or by intraoperative entero-colonoscopy. Eventually, if the source of bleeding remains unclear total colectomy with ileorectal anastomosis represents the procedure of choice in patients with acute lGB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a new exact algorithm PASS for the vertex coloring problem based on the well known DSATUR algorithm. At each step DSATUR maximizes saturation degree to select a new candidate vertex to color, breaking ties by maximum degree w.r.t. uncolored vertices. Later Sewell introduced a new tiebreaking strategy, which evaluated available colors for each vertex explicitly. PASS differs from Sewell in that it restricts its application to a particular set of vertices. Overall performance is improved when the new strategy is applied selectively instead of at every step. The paper also reports systematic experiments over 1500 random graphs and a subset of the DIMACS color benchmark.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present an algorithm as the combination of a low level morphological operation and model based Global Circular Shortest Path scheme to explore the segmentation of the Right Ventricle. Traditional morphological operations were employed to obtain the region of interest, and adjust it to generate a mask. The image cropped by the mask is then partitioned into a few overlapping regions. Global Circular Shortest Path algorithm is then applied to extract the contour from each partition. The final step is to re-assemble the partitions to create the whole contour. The technique is deemed quite reliable and robust, as this is illustrated by a very good agreement between the extracted contour and the expert manual drawing output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Multiple Pheromone Ant Clustering Algorithm (MPACA) models the collective behaviour of ants to find clusters in data and to assign objects to the most appropriate class. It is an ant colony optimisation approach that uses pheromones to mark paths linking objects that are similar and potentially members of the same cluster or class. Its novelty is in the way it uses separate pheromones for each descriptive attribute of the object rather than a single pheromone representing the whole object. Ants that encounter other ants frequently enough can combine the attribute values they are detecting, which enables the MPACA to learn influential variable interactions. This paper applies the model to real-world data from two domains. One is logistics, focusing on resource allocation rather than the more traditional vehicle-routing problem. The other is mental-health risk assessment. The task for the MPACA in each domain was to predict class membership where the classes for the logistics domain were the levels of demand on haulage company resources and the mental-health classes were levels of suicide risk. Results on these noisy real-world data were promising, demonstrating the ability of the MPACA to find patterns in the data with accuracy comparable to more traditional linear regression models. © 2013 Polish Information Processing Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ant colony optimisation algorithms model the way ants use pheromones for marking paths to important locations in their environment. Pheromone traces are picked up, followed, and reinforced by other ants but also evaporate over time. Optimal paths attract more pheromone and less useful paths fade away. The main innovation of the proposed Multiple Pheromone Ant Clustering Algorithm (MPACA) is to mark objects using many pheromones, one for each value of each attribute describing the objects in multidimensional space. Every object has one or more ants assigned to each attribute value and the ants then try to find other objects with matching values, depositing pheromone traces that link them. Encounters between ants are used to determine when ants should combine their features to look for conjunctions and whether they should belong to the same colony. This paper explains the algorithm and explores its potential effectiveness for cluster analysis. © 2014 Springer International Publishing Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ant Colony Optimisation algorithms mimic the way ants use pheromones for marking paths to important locations. Pheromone traces are followed and reinforced by other ants, but also evaporate over time. As a consequence, optimal paths attract more pheromone, whilst the less useful paths fade away. In the Multiple Pheromone Ant Clustering Algorithm (MPACA), ants detect features of objects represented as nodes within graph space. Each node has one or more ants assigned to each feature. Ants attempt to locate nodes with matching feature values, depositing pheromone traces on the way. This use of multiple pheromone values is a key innovation. Ants record other ant encounters, keeping a record of the features and colony membership of ants. The recorded values determine when ants should combine their features to look for conjunctions and whether they should merge into colonies. This ability to detect and deposit pheromone representative of feature combinations, and the resulting colony formation, renders the algorithm a powerful clustering tool. The MPACA operates as follows: (i) initially each node has ants assigned to each feature; (ii) ants roam the graph space searching for nodes with matching features; (iii) when departing matching nodes, ants deposit pheromones to inform other ants that the path goes to a node with the associated feature values; (iv) ant feature encounters are counted each time an ant arrives at a node; (v) if the feature encounters exceed a threshold value, feature combination occurs; (vi) a similar mechanism is used for colony merging. The model varies from traditional ACO in that: (i) a modified pheromone-driven movement mechanism is used; (ii) ants learn feature combinations and deposit multiple pheromone scents accordingly; (iii) ants merge into colonies, the basis of cluster formation. The MPACA is evaluated over synthetic and real-world datasets and its performance compares favourably with alternative approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our nation’s highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our national highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inverse heat conduction problems (IHCPs) appear in many important scientific and technological fields. Hence analysis, design, implementation and testing of inverse algorithms are also of great scientific and technological interest. The numerical simulation of 2-D and –D inverse (or even direct) problems involves a considerable amount of computation. Therefore, the investigation and exploitation of parallel properties of such algorithms are equally becoming very important. Domain decomposition (DD) methods are widely used to solve large scale engineering problems and to exploit their inherent ability for the solution of such problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis introduces the Salmon Algorithm, a search meta-heuristic which can be used for a variety of combinatorial optimization problems. This algorithm is loosely based on the path finding behaviour of salmon swimming upstream to spawn. There are a number of tunable parameters in the algorithm, so experiments were conducted to find the optimum parameter settings for different search spaces. The algorithm was tested on one instance of the Traveling Salesman Problem and found to have superior performance to an Ant Colony Algorithm and a Genetic Algorithm. It was then tested on three coding theory problems - optimal edit codes, optimal Hamming distance codes, and optimal covering codes. The algorithm produced improvements on the best known values for five of six of the test cases using edit codes. It matched the best known results on four out of seven of the Hamming codes as well as three out of three of the covering codes. The results suggest the Salmon Algorithm is competitive with established guided random search techniques, and may be superior in some search spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article a novel algorithm based on the chemotaxis process of Echerichia coil is developed to solve multiobjective optimization problems. The algorithm uses fast nondominated sorting procedure, communication between the colony members and a simple chemotactical strategy to change the bacterial positions in order to explore the search space to find several optimal solutions. The proposed algorithm is validated using 11 benchmark problems and implementing three different performance measures to compare its performance with the NSGA-II genetic algorithm and with the particle swarm-based algorithm NSPSO. (C) 2009 Elsevier Ltd. All rights reserved.