988 resultados para Annealed ising model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM) with metastable dynamics at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a Finite-Size Scaling (FSS) study of the avalanche density to be performed. Furthermore, a direct measurement of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several types of spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at T=0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the nonequilibrium behavior of the three-dimensional Gaussian random-field Ising model at T=0 in the presence of a uniform external field using a two-spin-flip dynamics. The deterministic, history-dependent evolution of the system is compared with the one obtained with the standard one-spin-flip dynamics used in previous studies of the model. The change in the dynamics yields a significant suppression of coercivity, but the distribution of avalanches (in number and size) stays remarkably similar, except for the largest ones that are responsible for the jump in the saturation magnetization curve at low disorder in the thermodynamic limit. By performing a finite-size scaling study, we find strong evidence that the change in the dynamics does not modify the universality class of the disorder-induced phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of vacancy concentration on the behavior of the three-dimensional random field Ising model with metastable dynamics is studied. We have focused our analysis on the number of spanning avalanches which allows us a clear determination of the critical line where the hysteresis loops change from continuous to discontinuous. By a detailed finite-size scaling analysis we determine the phase diagram and numerically estimate the critical exponents along the whole critical line. Finally, we discuss the origin of the curvature of the critical line at high vacancy concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the influence of the driving mechanism on the hysteretic response of systems with athermal dynamics. In the framework of local mean-field theory at finite temperature (but neglecting thermally activated processes), we compare the rate-independent hysteresis loops obtained in the random field Ising model when controlling either the external magnetic field H or the extensive magnetization M. Two distinct behaviors are observed, depending on disorder strength. At large disorder, the H-driven and M-driven protocols yield identical hysteresis loops in the thermodynamic limit. At low disorder, when the H-driven magnetization curve is discontinuous (due to the presence of a macroscopic avalanche), the M-driven loop is reentrant while the induced field exhibits strong intermittent fluctuations and is only weakly self-averaging. The relevance of these results to the experimental observations in ferromagnetic materials, shape memory alloys, and other disordered systems is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the thalamus on the diversity of cortical activations is investigated in terms of the Ising model with respect to progressive levels of cortico-thalamic connectivity. The results show that better diversity is achieved at lower modulation levels, being higher than those obtained with counterpart network models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present preliminary results of our numerical study of the critical dynamics of percolation observables for the two-dimensional Ising model. We consider the (Monte-Carlo) short-time evolution of the system obtained with a local heat-bath method and with the global Swendsen-Wang algorithm. In both cases, we find qualitatively different dynamic behaviors for the magnetization and Omega, the order parameter of the percolation transition. This may have implications for the recent attempts to describe the dynamics of the QCD phase transition using cluster observables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of our numerical study of the critical dynamics of percolation observables for the two-dimensional Ising model. We consider the (Monte Carlo) short-time evolution of the system with small initial magnetization and heat-bath dynamics. We find qualitatively different dynamic behaviors for the magnetization M and for Ω, the so-called strength of the percolating cluster, which is the order parameter of the percolation transition. More precisely, we obtain a (leading) exponential form for Ω as a function of the Monte Carlo time t, to be compared with the power-law increase encountered for M at short times. Our results suggest that, although the descriptions in terms of magnetic or percolation order parameters may be equivalent in the equilibrium regime, greater care must be taken to interpret percolation observables at short times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the interface dynamics of the two-dimensional stochastic Ising model in an external field under helicoidal boundary conditions. At sufficiently low temperatures and fields, the dynamics of the interface is described by an exactly solvable high-spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero range process. Generally, the critical dynamics of the interface fluctuations is in the Kardar-Parisi-Zhang universality class of critical behavior. We remark that a whole family of RSOS interface models similar to the Ising interface model investigated here can be described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present the idea of how generalized ensembles can be used to simplify the operational study of non-additive physical systems. As alternative of the usual methods of direct integration or mean-field theory, we show how the solution of the Ising model with infinite-range interactions is obtained by using a generalized canonical ensemble. We describe how the thermodynamical properties of this model in the presence of an external magnetic field are founded by simple parametric equations. Without impairing the usual interpretation, we obtain an identical critical behaviour as observed in traditional approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed multicanonical simulations to study the critical behavior of the two-dimensional Ising model with dipole interactions. This study concerns the thermodynamic phase transitions in the range of the interaction delta where the phase characterized by striped configurations of width h = 1 is observed. Controversial results obtained from local update algorithms have been reported for this region, including the claimed existence of a second-order phase transition line that becomes first order above a tricritical point located somewhere between delta = 0.85 and 1. Our analysis relies on the complex partition function zeros obtained with high statistics from multicanonical simulations. Finite size scaling relations for the leading partition function zeros yield critical exponents. that are clearly consistent with a single second-order phase transition line, thus excluding such a tricritical point in that region of the phase diagram. This conclusion is further supported by analysis of the specific heat and susceptibility of the orientational order parameter.