900 resultados para Angular coefficient
Resumo:
CHAPTER 1 - The gummy stem blight, caused by the fungus D. bryoniae, is a disease commonly found in watermelon cultivated in several countries. In Brazil, there are numerous studies related to the disease, but there are not uniform methods for quantifying of disease severity in the field. Thus, we developed a diagrammatic scale based on scanned photos of watermelon leaves infected with D. bryoniae. The scale developed showed levels of 0; 10; 20; 45; 65 and 90% of severity. The scale validation was divided into two parts: initially, 10 evaluators (half with experienced and other half without experience) estimated the disease severity based on the initial observation of 100 photos of watermelon leaves with symptoms of the disease at different severity levels. Before, the same evaluators estimated the disease severity with the support of the scale prepared from the Quant program. Data were analyzed using linear regression and were obtained angular, linear, and correlation coefficients. Based on these data, we determined the accuracy and precision of the evaluations. The correlation coefficients (R2) ranged from 0.88 - 0.97 for the experienced evaluators and from 0.55 - 0.95 for the inexperienced evaluators. The average angular coefficient (A) for inexperienced evaluators was 20.42 and 8.61 with and without the support of diagrammatic scale, respectively. Experienced evaluators showed values of average linear coefficient of 5.30 and 1.68 with and without the support of diagrammatic scale, respectively. The absolute errors analysis indicated that the use of diagrammatic scale contributed to minimize the flaws in the severity levels estimation. The diagrammatic scale proposed shown adequate for gummy stem blight severity evaluation in watermelon. CHAPTER 2 - The gummy stem blight (Didymella bryoniae) is a disease that affects the productivity of watermelon leading to losses over 40%. This study aimed to evaluate the efficiency of different production systems in control of gummy stem blight in watermelon for to establish efficient methods to combat the disease. There were applied the following treatments: conventional tillage (T1), integrated management (T2) and organic management (T3). In T1 and T2 were applied mineral fertilization and T3 was used bovine manure. There was application of fungicides and insecticides in commercial dose in T1 and T2, being after soil chemical analysis in T2. Disease severity was assessed by grading scale. The experimental design was randomized blocks. The severity of gummy stem blight has increased substantially during the fruit formation. Watermelon plants grown with integrated management (T2) showed lower levels of disease severity, while plants in organic management (T3) exhibited higher levels of severity. We conclude that management based on judicious accompaniments in field represents best way to achieve the phytosanitary aspect adequate for cultivation of watermelon in Tocantins.
Resumo:
The marine fish white mullet, Mugil curema Valenciennes, 1836 (Osteichthyes: Mugilidae) exhibits a wide geographical distribution, being common in the Brazilian coast and is an important component of the artisanal fisheries. The objective of this study was to investigate the reproductive biology of M. curema in the coastal waters of Rio Grande do Norte. Fish samples were captured on a monthly basis during August, 2008 to July, 2009. The fish specimens were numbered, weighed, measured, dissected and their gonads were removed, weighed, their sex and gonadal development were identified. The length-weight relationship was determined for males and females. The sex ratio, the size at first gonadal maturation and gonadosomatic index (GSI) were calculated and ovarian development was investigated using macroscopic and histological techniques. The fecundity, spawning type and the reproductive period of the species were determined. A total of 366 specimens (186 males and 180 females) were captured. The sex ratio was 1:1 and the females were heavier than males. The estimated values of the angular coefficient for both sexes suggest that the species has isometric growth. The size at which 50% of the population began the process of maturation was 25.9 cm of total length for grouped sex. The macroscopic characteristics of the ovaries showed four stages of development: immature, maturing, mature and spent. However, the microscopic characteristics of the ovaries showed five stages of development: immature, early maturing, late maturing, mature and spent. The development of oocytes indicated five phases: Chromatin-nucleolus (phase I), initial perinucleolar (phase II), final perinuclear (phase II), formation of vitelline vesicle or yolk (phase III), vitellogenic (phase IV) and complete vitellogenesis (phase V). The species has a prolonged spawning period, with two peaks coinciding with the rainy season.
Resumo:
The beta-decay of free neutrons is a strongly over-determined process in the Standard Model (SM) of Particle Physics and is described by a multitude of observables. Some of those observables are sensitive to physics beyond the SM. For example, the correlation coefficients of the involved particles belong to them. The spectrometer aSPECT was designed to measure precisely the shape of the proton energy spectrum and to extract from it the electron anti-neutrino angular correlation coefficient "a". A first test period (2005/ 2006) showed the “proof-of-principles”. The limiting influence of uncontrollable background conditions in the spectrometer made it impossible to extract a reliable value for the coefficient "a" (publication: Baessler et al., 2008, Europhys. Journ. A, 38, p.17-26). A second measurement cycle (2007/ 2008) aimed to under-run the relative accuracy of previous experiments (Stratowa et al. (1978), Byrne et al. (2002)) da/a =5%. I performed the analysis of the data taken there which is the emphasis of this doctoral thesis. A central point are background studies. The systematic impact of background on a was reduced to da/a(syst.)=0.61 %. The statistical accuracy of the analyzed measurements is da/a(stat.)=1.4 %. Besides, saturation effects of the detector electronics were investigated which were initially observed. These turned out not to be correctable on a sufficient level. An applicable idea how to avoid the saturation effects will be discussed in the last chapter.
Resumo:
Using a nonperturbative quantum scattering theory, the photoelectron angular distributions (PADs) from the multiphoton detachment of H- ions in strong, linearly polarized infrared laser fields are obtained to interpret recent experimental observations. In our theoretical treatment, the PADs in n-photon detachment are determined by the nth-order generalized phased Bessel (GPB) functions X-n(Z(f),eta). The advantage of using the GPB scenario to calculate PADs is its simplicity: a single special function (GPB) without any mixing coefficient can express PADs observed by recent experiments. Thus, the GPB scenario can be called a parameterless scenario.
Resumo:
A single air bubble rising in xanthan gum crystal
suspension has been studied experimentally. The
suspension was made by different concentrations of
xanthan gum solutions with 0.23 mm polystyrene crystal
particles. Drag co-efficient data and a new correlation of
drag coefficient is presented for spherical and nonspherical
bubbles in non-Newtonian crystal suspension.
The correlation is developed in terms of the Reynolds
number, Re and the bubble shape factor, � (the ratio
between the surface equivalent sphere diameter to the
volume equivalent sphere diameter). The experimental
drag coefficient was found to be consistent with this new
predicted correlation and published data over the ranges,
0.1
Resumo:
The vibration serviceability limit state is an important design consideration for two-way, suspended concrete floors that is not always well understood by many practicing structural engineers. Although the field of floor vibration has been extensively developed, at present there are no convenient design tools that deal with this problem. Results from this research have enabled the development of a much-needed, new method for assessing the vibration serviceability of flat, suspended concrete floors in buildings. This new method has been named, the Response Coefficient-Root Function (RCRF) method. Full-scale, laboratory tests have been conducted on a post-tensioned floor specimen at Queensland University of Technology’s structural laboratory. Special support brackets were fabricated to perform as frictionless, pinned connections at the corners of the specimen. A series of static and dynamic tests were performed in the laboratory to obtain basic material and dynamic properties of the specimen. Finite-element-models have been calibrated against data collected from laboratory experiments. Computational finite-element-analysis has been extended to investigate a variety of floor configurations. Field measurements of floors in existing buildings are in good agreement with computational studies. Results from this parametric investigation have led to the development of new approach for predicting the design frequencies and accelerations of flat, concrete floor structures. The RCRF method is convenient tool to assist structural engineers in the design for the vibration serviceability limit-state of in-situ concrete floor systems.
Resumo:
Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.
Resumo:
Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.