939 resultados para Anatase TiO


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium dioxide with and without the addition of neodymium ions was prepared using sol-gel and precipitation methods. The resulting catalysts were characterized by thermal analysis, X-ray diffraction and BET specific surface area. Neodymium addition exerted a remarkable influence on the phase transition temperature and the surface properties of the TiO(2) matrix. TiO(2) samples synthesized by precipitation exhibit an exothermic event related from the amorphous to anatase phase transition at 510 degrees C, whereas in Nd-doped TiO(2) this transition occurred at 527 degrees C. A similar effect was observed in samples obtained using sol-gel method. The photocatalytic reactivity of the catalysts was evaluated by photodegradation of Remazol Black B (RB) under ultraviolet irradiation. Nd-doped TiO(2) showed enhanced photodegradation ability compared to undoped TiO(2) samples, independent of the method of synthesis. In samples obtained by sol-gel, RB decoloration was enhanced by 16% for TiO(2) doped with 0.5% neodymium ions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of the V(2)O(5)/TiO(2) system were prepared by the sol-gel method and calcined at different temperatures. Surface species of vanadium, their dispersion, as well as the structural evolution of the system were analysed by XRD, Raman, EPR, and XPS techniques. The results of XRD showed the evolution of TiO(2) from anatase phase to rutile. phase. The Raman spectra for calcination temperatures up to 500 degreesC showed a good dispersion of vanadium over titania in the form of monomeric vanadyl groups (V(4+)) and polymeric vanadates (V(5+)). At least three families of V4+ ions were identified by EPR investigations. Two kinds of isolated V(4+) species are placed in sites of octahedral symmetry, substituting Ti(4+) in the rutile phase. The third is formed by pairs of V(4+) species on the surface of titania. Above 500 degreesC part of superficial V(4+) is inserted into the,matrix of titania and part is oxidized to V(5+). The XPS results showed that the V/Ti ratio rises with increasing calcination temperature, indicating a smaller dispersion of vanadium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of silver insertion on the TiO(2) photocatalytic activity for the degradation of diclofenac potassium were reported here. Techniques such as X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy were used to comprehend the relation between structure and properties of the silver-modified TiO(2), thin films obtained by the sol-gel method. The lattice parameters and the crystallinity of TiO(2) anatase phase were affected by inserted silver, and the film thickness increased about 4 nm for each 1 wt.% of silver inserted. The degradation of diclofenac potassium and by-products reached an efficiency of 4.6 mg(C) W(-1) when the material was modified with silver. Although the first step of degradation involves only the photochemical process related to the loss of the chlorine and hydrogen atoms. This cyclization reaction leads to the formation of intermediate, which degradation is facilitated by the modified material. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anatase nanoparticles were obtained through a modified sol-gel route from titanium isopropoxide modified with acetic acid in order to control hydrolysis and condensation reactions. The modification of Ti(O(i)Pr)(4) with acetic acid reduces the availability of groups that hydrolyze and condense easily through the formation of a stable complex whose structure was determined to be Ti(OCOCH(3))(O(i)Pr)(2) by means of FTIR and (13)C NMR. The presence of this complex was confirmed with FTIR in the early stages of the process. A doublet in 1542 and 1440 cm(-1) stands for the asymmetric and symmetric stretching vibrations of the carboxylic group coordinated to Ti as a bidentate ligand. The gap of 102 cm(-1) between these signals suggests that acetate acts preferentially as a bidentate rather than as a bridging ligand between two titanium atoms. The use of acetic acid as modifier allows the control of both the degree of condensation and oligomerization of the precursor and leads to the preferential crystallization of TiO(2) in the anatase phase. A possible reaction pathway toward the formation of anatase is proposed on the basis of the intermediate species present in a 1:1 Ti(O(i)Pr)(4):CH(3)COOH molar system in which esterification reactions that introduce H(2)O into the reaction mixture were seen to be negligible. The Rietveld refinement and TEM analysis revealed that the powder is composed of isotropic anatase nanocrystallites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes a modified sol-gel method for the preparation of V 2O 5/TiO 2 catalysts. The samples have been characterized by N 2 adsorption at 77K, x-ray diffractometry (XRD) and Fourier Transform Infrared (FT-IR). The surface area increases with the vanadia loading from 24 m 2 g -1, for pure TiO 2, to 87 m 2 g -1 for 9wt.% of V 2O 5. The rutile form is predominant for pure TiO 2 but became enriched with anatase phase when vanadia loading is increased. No crystalline V 2O 5 phase was observed in the catalysts diffractograms. Two species of surface vanadium observed by FT-IR spectroscopy a monomeric vanadyl and polymeric vanadates, the vanadyl/vanadate ratio remains practically constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of high hydrostatic and [001] uniaxial pressures on TiO 2 anatase was studied under the framework of periodic calculations with the inclusion of DFT-D2 dispersion potential adjusted for this system (B3LYP-D*). The role of dispersion in distorted unit cells was evaluated in terms of lattice parameters, elastic constants, equation of state, vibrational properties, and electronic properties (band structure and density of states). A more reliable description at high pressures was achieved because the B3LYP-D* presented an improvement in all properties for undistorted bulk over conventional B3LYP and B3LYP-D. From density of states analysis, we observed that the contribution of crystalline orbitals to the edge of valence and conduction bands changed within applied pressure. The studied distortions can give some insight into behavior of electronic and structural properties due to local stress in anatase bulk from doping, defects, and physical tensions in nanometric forms. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiconductor-mediated photocatalytic oxidation is an interesting method for water decontamination and a specially modified TiO2 is said to be a promising material. This study verified that the synthesis of 1wt%Ag modified-Sc0.01Ti0.99O1.995 powder samples prepared by Polymeric Precursor Method is capable of forming a mixture of anatase-rutile phase with high photocatalytic performance. This kind of material is found to have a lower bandgap compared to the TiO2-anatase commercial powders, which can be associated to an innovative hybrid modification. The simultaneous insertion of scandium in order to generate a p-type semiconductor and a metallic silver nanophase acting as an electron trapper demonstrated being capable of enhancing the degradation of rhodamine B compared to the commercial TiO2. In spite of the different thermal treatments or phase amounts, the hybrid modified powder samples showed higher photocatalytic activity than the commercial ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co- und Fe-dotierte Rutil- und Anatas-Bulkproben wurden über einen Sol-Gel Prozess und anschließende thermische Behandlung dargestellt und auf ihre Zugehörigkeit zu der Gruppe der verdünnten magnetischen Oxide untersucht. Die Untersuchungen der dotierten Rutil-Proben mittels Röntgenbeugung, Elektronenmikroskopie und magnetischen Methoden zeigen, dass die Löslichkeit von Co und Fe in der TiO2-Modifikation Rutil sehr gering ist. Oberhalb von 1at% Co bzw. Fe wird neben Rutil die Bildung der Oxide CoTiO3 bzw. Fe2TiO5 beobachtet. Weitere thermische Behandlung im Argon-H2-Strom führte aufgrund der Bildung von metallischem Co bzw. Fe zu einem ferromagnetischen Verhalten. Die TiO2-Modifikation Anatas besitzt eine höhere Löslichkeit, so dass erst oberhalb von 4at% Co bzw. 10at% Fe die Phasen Co3O4 bzw. FeTiO3 neben Anatas auftreten. Entsprechende Proben zeigen ein paramagnetisches Verhalten. Oberhalb der Löslichkeitsgrenze führt die Reduktion im Argon-H2-Strom zu einem ferromagnetischen Verhalten, welches auf metallisches Co bzw. Fe zurückzuführen ist. Analog zu den Bulkproben wurden Co- und Fe-dotierte TiO2-Nanodrähte hergestellt. Das magnetische Verhalten der Fe-dotierten TiO2-Nanodrähte entspricht dem der Fe-dotierten Anatas-Bulkproben. Dagegen führt die Co-Dotierung nicht zu einem Einbau in die TiO2-Nanodrähte, sondern zur Bildung von CoOx-Nanopartikeln. Die entsprechenden Proben zeigen ein schwach ferromagnetisches Verhalten. Dies ist jedoch nicht auf eine ferromagnetische Dotierung der TiO2-Nanodrähte zurückzuführen, sondern auf nicht kompensierte Momente an den Oberflächen der als Verunreinigungen auftretenden CoOx-Nanopartikel. Zusammenfassend wird festgestellt, dass die Löslichkeit von Co und Fe in TiO2 für die Ausbildung eines ferromagnetischen Verhaltens zu gering ist. Der beobachtete Ferromagnetismus lässt sich eindeutig auf magnetische Verunreinigungen zurückführen. Somit können die dotierten TiO2 Proben nicht den verdünnten magnetischen Oxiden zugeordnet werden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In hybrid organic solar cells a blocking layer between transparent electrode and nanocrystalline titania particles is essential to prevent short-circuiting and current loss through recombination at the electrode interface. Here the preparation of a uniform hybrid blocking layer which is composed of conducting titania nanoparticles embedded in an insulating polymer derived ceramic is presented. This blocking layer is prepared by sol-gel chemistry where an amphiphilic block copolymer is used as a templating agent. A novel poly(dimethylsiloxane) containing amphiphilic block copolymer poly(ethyleneglycol)methylethermethacrylate-block-poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate has been synthesized to act as the templating agent. Plasma treatment uncovered titania surface from any polymer. Annealing at 450°C under nitrogen resulted in anatase titania with polymer derived silicon oxycarbide ceramic. Electrical characterization by conductive scanning probe microscopy experiments revealed a percolating titania network separated by an insulating ceramic matrix. Scanning Kelvin probe force microscopy showed predominant presence of titania particles on the surface creating a large surface area for dye absorption. The uniformity of the percolating structures was proven by microbeam grazing incidence small angle x-ray scattering. First applications in hybrid organic solar cells in comparison with conventional titanium dioxide blocking layer containing devices revealed 15 fold increases in corresponding efficiencies. Poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate and poly(ethyleneoxide)-poly(dimethylsiloxane)methylmethacrylate diblock copolymers were also synthesized. Their titania nanocomposite films were compared with the integrated blocking layer. Liner poly(ethyleneoxide) containing diblock copolymer resulted in highly ordered foam like structures. The effect of heating temperature rise to 600°C and 1000°C on titania morphology was investigated by scanning electron and force microscopy and x-ray scattering. Sol-gel contents, hydrochloric acid, titania precursor and amphiphilic triblock copolymer were altered to see their effect on titania morphology. Increase in block copolymer content resulted in titania particles of diameter 15-20 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional TiO2 with tunable morphology and crystalline phase was successfully prepared by the electrospinning technique and subsequent annealing. Porous-shaped anatase TiO2, cluster-shaped anatase TiO2, hierarchical-shaped rutile (minor) TiO2 and nano-necklace rutile (major) TiO2 were achieved at 500, 600, 700 and 800°C, respectively. The mechanism of the formation of these tailored morphologies and crystallinity was investigated. Lithium insertion properties were evaluated by galvanostatic and potentiostatic modes in half-cell configurations. By combining the large surface area, open mesoporosity and stable crystalline phase, the porous-shaped anatase TiO2 exhibited the highest capacity, best rate and cycling performance among the four samples. The present results demonstrated the usefulness of three-dimensional TiO 2 as an anode for lithium storage with improved electrode performance. © 2013 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface modification of rutile TiO2 with extremely small SnO2 clusters gives rise to a great increase in its UV light activity for degradation of model organic water pollutants, while the effect is much smaller for anatase TiO2. This crystal form sensitivity is rationalized in terms of the difference in the electronic modification of TiO2 through the interfacial Sn−O−Ti bonds. The increase in the density of states near the conduction band minimum of rutile by hybridization with the SnO2 cluster levels intensifies the light absorption, but this is not seen with modified anatase. The electronic transition from the valence band to the conduction band causes the bulk-to-surface interfacial electron transfer to enhance charge separation. Further, electrons relaxed to the conduction minimum are smoothly transferred to O2 due to the action of the SnO2 species as an electron transfer promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal oxide-semiconductor capacitors with TiO(x) deposited with different O(2) partial pressures (30%, 35%, and 40%) and annealed at 550, 750, and 1000 degrees C were fabricated and characterized. Fourier transform infrared, x-ray near edge spectroscopy, and elipsometry measurements were performed to characterize the TiO(x) films. TiO(x)N(y) films were also obtained by adding nitrogen to the gaseous mixture and physical results were presented. Capacitance-voltage (1 MHz) and current-voltage measurements were utilized to obtain the effective dielectric constant, effective oxide thickness, leakage current density, and interface quality. The results show that the obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density (for V(G)=-1 V, for some structures as low as 1 nA/cm(2), acceptable for complementary metal oxide semiconductor circuits fabrication), indicating that this material is a viable, in terms of leakage current density, highk substitute for current ultrathin dielectric layers. (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3043537]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba(0.77) Ca(0.23)TiO(3) (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 degrees C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO(6) octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb(3+) doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm(-1), which is in agreement with lattice dynamics calculations. (c) 2011 American Institute of Physics. [doi:10.1063/1.3594710]