968 resultados para Analytic function theory,
Resumo:
We study the possibility of splitting any bounded analytic function $f$ with singularities in a closed set $E\cup F$ as a sum of two bounded analytic functions with singularities in $E$ and $F$ respectively. We obtain some results under geometric restrictions on the sets $E$ and $F$ and we provide some examples showing the sharpness of the positive results.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
Triple-gate devices are considered a promising solution for sub-20 nm era. Strain engineering has also been recognized as an alternative due to the increase in the carriers mobility it propitiates. The simulation of strained devices has the major drawback of the stress non-uniformity, which cannot be easily considered in a device TCAD simulation without the coupled process simulation that is time consuming and cumbersome task. However, it is mandatory to have accurate device simulation, with good correlation with experimental results of strained devices, allowing for in-depth physical insight as well as prediction on the stress impact on the device electrical characteristics. This work proposes the use of an analytic function, based on the literature, to describe accurately the strain dependence on both channel length and fin width in order to simulate adequately strained triple-gate devices. The maximum transconductance and the threshold voltage are used as the key parameters to compare simulated and experimental data. The results show the agreement of the proposed analytic function with the experimental results. Also, an analysis on the threshold voltage variation is carried out, showing that the stress affects the dependence of the threshold voltage on the temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Steiner’s tube formula states that the volume of an ϵ-neighborhood of a smooth regular domain in Rn is a polynomial of degree n in the variable ϵ whose coefficients are curvature integrals (also called quermassintegrals). We prove a similar result in the sub-Riemannian setting of the first Heisenberg group. In contrast to the Euclidean setting, we find that the volume of an ϵ-neighborhood with respect to the Heisenberg metric is an analytic function of ϵ that is generally not a polynomial. The coefficients of the series expansion can be explicitly written in terms of integrals of iteratively defined canonical polynomials of just five curvature terms.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
MSC 2010: 30C45
Resumo:
MSC 2010: 30C45
Resumo:
2000 Mathematics Subject Classification: 11D75, 11D85, 11L20, 11N05, 11N35, 11N36, 11P05, 11P32, 11P55.
Resumo:
MSC 2010: 30C45
Resumo:
In this work we study the existence and regularity of mild solutions for a damped second order abstract functional differential equation with impulses. The results are obtained using the cosine function theory and fixed point criterions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The theory of orthogonal polynomials of one real or complex variable is well established as well as its generalization for the multidimensional case. Hypercomplex function theory (or Clifford analysis) provides an alternative approach to deal with higher dimensions. In this context, we study systems of orthogonal polynomials of a hypercomplex variable with values in a Clifford algebra and prove some of their properties.
Resumo:
We describe one of the research lines of the Grup de Teoria de Funcions de la UAB UB, which deals with sampling and interpolation problems in signal analysis and their connections with complex function theory.