995 resultados para Analytic Function
Resumo:
We study the existence of homoclic solutions for reversible Hamiltonian systems taking the family of differential equations u(iv) + au - u +f(u, b) = 0 as a model, where fis an analytic function and a, b real parameters. These equations are important in several physical situations such as solitons and in the existence of finite energy stationary states of partial differential equations, but no assumptions of any kind of discrete symmetry is made and the analysis here developed can be extended to others Hamiltonian systems and successfully employed in situations where standard methods fail. We reduce the problem of computing these orbits to that of finding the intersection of the unstable manifold with a suitable set and then apply it to concrete situations. We also plot the homoclinic values configuration in parameters space, giving a picture of the structural distribution and a geometrical view of homoclinic bifurcations. (c) 2005 Published by Elsevier B.V.
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The way mass is distributed in galaxies plays a major role in shaping their evolution across cosmic time. The galaxy's total mass is usually determined by tracing the motion of stars in its potential, which can be probed observationally by measuring stellar spectra at different distances from the galactic centre, whose kinematics is used to constrain dynamical models. A class of such models, commonly used to accurately determine the distribution of luminous and dark matter in galaxies, is that of equilibrium models. In this Thesis, a novel approach to the design of equilibrium dynamical models, in which the distribution function is an analytic function of the action integrals, is presented. Axisymmetric and rotating models are used to explain observations of a sample of nearby early-type galaxies in the Calar Alto Legacy Integral Field Area survey. Photometric and spectroscopic data for round and flattened galaxies are well fitted by the models, which are then used to get the galaxies' total mass distribution and orbital anisotropy. The time evolution of massive early-type galaxies is also investigated with numerical models. Their structural properties (mass, size, velocity dispersion) are observed to evolve, on average, with redshift. In particular, they appear to be significantly more compact at higher redshift, at fixed stellar mass, so it is interesting to investigate what drives such evolution. This Thesis focuses on the role played by dark-matter haloes: their mass-size and mass-velocity dispersion correlations evolve similarly to the analogous correlations of ellipticals; at fixed halo mass, the haloes are more compact at higher redshift, similarly to massive galaxies; a simple model, in which all the galaxy's size and velocity-dispersion evolution is due to the cosmological evolution of the underlying halo population, reproduces the observed size and velocity-dispersion of massive compact early-type galaxies up to redshift of about 2.
Resumo:
Purpose: Development of an interpolation algorithm for re‐sampling spatially distributed CT‐data with the following features: global and local integral conservation, avoidance of negative interpolation values for positively defined datasets and the ability to control re‐sampling artifacts. Method and Materials: The interpolation can be separated into two steps: first, the discrete CT‐data has to be continuously distributed by an analytic function considering the boundary conditions. Generally, this function is determined by piecewise interpolation. Instead of using linear or high order polynomialinterpolations, which do not fulfill all the above mentioned features, a special form of Hermitian curve interpolation is used to solve the interpolation problem with respect to the required boundary conditions. A single parameter is determined, by which the behavior of the interpolation function is controlled. Second, the interpolated data have to be re‐distributed with respect to the requested grid. Results: The new algorithm was compared with commonly used interpolation functions based on linear and second order polynomial. It is demonstrated that these interpolation functions may over‐ or underestimate the source data by about 10%–20% while the parameter of the new algorithm can be adjusted in order to significantly reduce these interpolation errors. Finally, the performance and accuracy of the algorithm was tested by re‐gridding a series of X‐ray CT‐images. Conclusion: Inaccurate sampling values may occur due to the lack of integral conservation. Re‐sampling algorithms using high order polynomialinterpolation functions may result in significant artifacts of the re‐sampled data. Such artifacts can be avoided by using the new algorithm based on Hermitian curve interpolation
Resumo:
Steiner’s tube formula states that the volume of an ϵ-neighborhood of a smooth regular domain in Rn is a polynomial of degree n in the variable ϵ whose coefficients are curvature integrals (also called quermassintegrals). We prove a similar result in the sub-Riemannian setting of the first Heisenberg group. In contrast to the Euclidean setting, we find that the volume of an ϵ-neighborhood with respect to the Heisenberg metric is an analytic function of ϵ that is generally not a polynomial. The coefficients of the series expansion can be explicitly written in terms of integrals of iteratively defined canonical polynomials of just five curvature terms.
Resumo:
We characterize the region of meromorphic continuation of an analytic function ff in terms of the geometric rate of convergence on a compact set of sequences of multi-point rational interpolants of ff. The rational approximants have a bounded number of poles and the distribution of interpolation points is arbitrary.
Resumo:
Recently, a new method to analyze biological nonstationary stochastic variables has been presented. The method is especially suitable to analyze the variation of one biological variable with respect to changes of another variable. Here, it is illustrated by the change of the pulmonary blood pressure in response to a step change of oxygen concentration in the gas that an animal breathes. The pressure signal is resolved into the sum of a set of oscillatory intrinsic mode functions, which have zero “local mean,” and a final nonoscillatory mode. With this device, we obtain a set of “mean trends,” each of which represents a “mean” in a definitive sense, and together they represent the mean trend systematically with different degrees of oscillatory content. Correspondingly, the oscillatory content of the signal about any mean trend can be represented by a set of partial sums of intrinsic mode functions. When the concept of “indicial response function” is used to describe the change of one variable in response to a step change of another variable, we now have a set of indicial response functions of the mean trends and another set of indicial response functions to describe the energy or intensity of oscillations about each mean trend. Each of these can be represented by an analytic function whose coefficients can be determined by a least-squares curve-fitting procedure. In this way, experimental results are stated sharply by analytic functions.
Resumo:
MSC 2010: 30C45, 30C55
Resumo:
MSC 2010: 30C45
Resumo:
MSC 2010: 30C45, 30A20, 34C40
Resumo:
MSC 2010: 35J05, 33C10, 45D05
Resumo:
The introduction of delays into ordinary or partial differential equation models is well known to facilitate the production of rich dynamics ranging from periodic solutions through to spatio-temporal chaos. In this paper we consider a class of scalar partial differential equations with a delayed threshold nonlinearity which admits exact solutions for equilibria, periodic orbits and travelling waves. Importantly we show how the spectra of periodic and travelling wave solutions can be determined in terms of the zeros of a complex analytic function. Using this as a computational tool to determine stability we show that delays can have very different effects on threshold systems with negative as opposed to positive feedback. Direct numerical simulations are used to confirm our bifurcation analysis, and to probe some of the rich behaviour possible for mixed feedback.
Resumo:
O regime eólico de uma região pode ser descrito por distribuição de frequências que fornecem informações e características extremamente necessárias para uma possível implantação de sistemas eólicos de captação de energia na região e consequentes aplicações no meio rural em regiões afastadas. Estas características, tais como a velocidade média anual, a variância das velocidades registradas e a densidade da potência eólica média horária, podem ser obtidas pela frequência de ocorrências de determinada velocidade, que por sua vez deve ser estudada através de expressões analíticas. A função analítica mais adequada para distribuições eólicas é a função de densidade de Weibull, que pode ser determinada por métodos numéricos e regressões lineares. O objetivo deste trabalho é caracterizar analítica e geometricamente todos os procedimentos metodológicos necessários para a realização de uma caracterização completa do regime eólico de uma região e suas aplicações na região de Botucatu - SP, visando a determinar o potencial energético para implementação de turbinas eólicas. Assim, foi possível estabelecer teoremas relacionados com a forma de caracterização do regime eólico, estabelecendo a metodologia concisa analiticamente para a definição dos parâmetros eólicos de qualquer região a ser estudada. Para o desenvolvimento desta pesquisa, utilizou-se um anemômetro da CAMPBELL.
Resumo:
We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.