907 resultados para Análise de séries temporais
Resumo:
A dissertação tem como principal objetivo a busca de evidências da existência de um componente determinístico no comportamento dos preços de certas ações negociadas na Bolsa de Valores de São Paulo (BOVESPA) e em índices amplos do mercado, tais como o Ibovespa e IBX e, como conseqüência, determinar se a Hipótese de Mercado Eficiente é válida para o mercado financeiro brasileiro. Um objetivo secundário é mostrar a aplicabilidade de técnicas interdisciplinares ao estudo de Finanças empíricas, técnicas essas que, desde sua incepção, já levam em consideração o fato de que os dados estudados não atendem ao requisito de normalidade e que as observações não são independentes entre si. Essa aplicabilidade já é largamente demonstrada em inúmeros estudos internacionais e diversas publicações no Brasil. Porém, o presente trabalho tentará aplicar uma estrutura analítica mais flexível e computacionalmente mais eficiente, utilizando ferramentas trazidas do campo da Teoria da Informação e avanços relativamente recentes da área.
Resumo:
As variáveis econômicas são frequentemente governadas por processos dinâmicos e não-lineares que podem gerar relações de dependência de longo prazo e padrões cíclicos não-periódicos com mudanças abruptas de tendências. Para o caso dos preços agrícolas este comportamento não é diferente e as peculiaridades destes mercados podem gerar séries temporais fracionalmente integradas, cujas singularidades não seriam adequadamente capturadas pelos tradicionais modelos analíticos fundamentados na hipótese dos mercados eficientes e de passeio aleatório. Sendo assim, o presente estudo buscou investigar a presença de estruturas fractais no mercado à vista de algumas das principais commodities agrícolas brasileiras: café, boi gordo, açúcar, milho, soja e bezerro. Foram empregadas técnicas tradicionais e específicas para a análise de séries temporais fractais como a análise de R/S e a aplicação de modelos das famílias ARFIMA e FIGARCH. Os resultados indicaram que, com exceção do bezerro, o componente de drift destas séries não apresentou comportamento fractal, ao contrário do observado para o componente da volatilidade, que apresentou aspecto de estrutura fractal para todas as commodities analisadas.
Resumo:
Este Trabalho se Dedica ao exercício empírico de gerar mais restrições ao modelo de apreçamento de ativos com séries temporais desenvolvido por Hansen e Singleton JPE 1983. As restrições vão, desde um simples aumento qualitativo nos ativos estudados até uma extensão teórica proposta a partir de um estimador consistente do fator estocástico de desconto. As estimativas encontradas para a aversão relativa ao risco do agente representativo estão dentro do esperado, na maioria dos casos, já que atingem valores já encontrados na literatura além do fato destes valores serem economicamente plausíveis. A extensão teórica proposta não atingiu resultados esperados, parecendo melhorar a estimação do sistema marginalmente.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The multivariate t models are symmetric and with heavier tail than the normal distribution, important feature in financial data. In this theses is presented the Bayesian estimation of a dynamic factor model, where the factors follow a multivariate autoregressive model, using multivariate t distribution. Since the multivariate t distribution is complex, it was represented in this work as a mix between a multivariate normal distribution and a square root of a chi-square distribution. This method allowed to define the posteriors. The inference on the parameters was made taking a sample of the posterior distribution, through the Gibbs Sampler. The convergence was verified through graphical analysis and the convergence tests Geweke (1992) and Raftery & Lewis (1992a). The method was applied in simulated data and in the indexes of the major stock exchanges in the world.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, Programa de Pós-Graduação em Geografia, 2015.
Resumo:
Nesta dissertação estudámos as séries temporais que representam a complexa dinâmica do comportamento. Demos especial atenção às técnicas de dinâmica não linear. As técnicas fornecem-nos uma quantidade de índices quantitativos que servem para descrever as propriedades dinâmicas do sistema. Estes índices têm sido intensivamente usados nos últimos anos em aplicações práticas em Psicologia. Estudámos alguns conceitos básicos de dinâmica não linear, as características dos sistemas caóticos e algumas grandezas que caracterizam os sistemas dinâmicos, que incluem a dimensão fractal, que indica a complexidade de informação contida na série temporal, os expoentes de Lyapunov, que indicam a taxa com que pontos arbitrariamente próximos no espaço de fases da representação do espaço dinâmico, divergem ao longo do tempo, ou a entropia aproximada, que mede o grau de imprevisibilidade de uma série temporal. Esta informação pode então ser usada para compreender, e possivelmente prever, o comportamento. ABSTRACT: ln this thesis we studied the time series that represent the complex dynamic behavior. We focused on techniques of nonlinear dynamics. The techniques provide us a number of quantitative indices used to describe the dynamic properties of the system. These indices have been extensively used in recent years in practical applications in psychology. We studied some basic concepts of nonlinear dynamics, the characteristics of chaotic systems and some quantities that characterize the dynamic systems, including fractal dimension, indicating the complexity of information in the series, the Lyapunov exponents, which indicate the rate at that arbitrarily dose points in phase space representation of a dynamic, vary over time, or the approximate entropy, which measures the degree of unpredictability of a series. This information can then be used to understand and possibly predict the behavior.
Resumo:
A previsão de valores futuros em séries temporais produzidas por sistemas caóticos pode ser aplicada em diversas áreas do conhecimento como Astronomia, Economia, Física, Medicina, Meteorologia e Oceanografia. O método empregado consiste na reconstrução do espaço de fase seguido de um termo de melhoria da previsão. As rotinas utilizadas para a previsão e análise nesta linha de pesquisa fazem parte do pacote TimeS, que apresenta resultados encorajadores nas suas aplicações. O aperfeiçoamento das rotinas computacionais do pacote com vistas à melhoria da acurácia obtida e à redução do tempo computacional é construído a partir da investigação criteriosa da minimização empregada na obtenção do mapa global. As bases matemáticas são estabelecidas e novas rotinas computacionais são criadas. São ampliadas as possibilidades de funções de ajuste que podem incluir termos transcendentais nos componentes dos vetores reconstruídos e também possuir termos lineares ou não lineares nos parâmetros de ajuste. O ganho de eficiência atingido permite a realização de previsões e análises que respondem a perguntas importantes relacionadas ao método de previsão e ampliam a possibilidade de aplicações a séries reais.
Resumo:
A análise das séries temporais de valores inteiros tornou-se, nos últimos anos, uma área de investigação importante, não só devido à sua aplicação a dados de contagem provenientes de diversos campos da ciência, mas também pelo facto de ser uma área pouco explorada, em contraste com a análise séries temporais de valores contínuos. Uma classe que tem obtido especial relevo é a dos modelos baseados no operador binomial thinning, da qual se destaca o modelo auto-regressivo de valores inteiros de ordem p. Esta classe é muito vasta, pelo que este trabalho tem como objectivo dar um contributo para a análise estatística de processos de contagem que lhe pertencem. Esta análise é realizada do ponto de vista da predição de acontecimentos, aos quais estão associados mecanismos de alarme, e também da introdução de novos modelos que se baseiam no referido operador. Em muitos fenómenos descritos por processos estocásticos a implementação de um sistema de alarmes pode ser fundamental para prever a ocorrência de um acontecimento futuro. Neste trabalho abordam-se, nas perspectivas clássica e bayesiana, os sistemas de alarme óptimos para processos de contagem, cujos parâmetros dependem de covariáveis de interesse e que variam no tempo, mais concretamente para o modelo auto-regressivo de valores inteiros não negativos com coeficientes estocásticos, DSINAR(1). A introdução de novos modelos que pertencem à classe dos modelos baseados no operador binomial thinning é feita quando se propõem os modelos PINAR(1)T e o modelo SETINAR(2;1). O modelo PINAR(1)T tem estrutura periódica, cujas inovações são uma sucessão periódica de variáveis aleatórias independentes com distribuição de Poisson, o qual foi estudado com detalhe ao nível das suas propriedades probabilísticas, métodos de estimação e previsão. O modelo SETINAR(2;1) é um processo auto-regressivo de valores inteiros, definido por limiares auto-induzidos e cujas inovações formam uma sucessão de variáveis independentes e identicamente distribuídas com distribuição de Poisson. Para este modelo estudam-se as suas propriedades probabilísticas e métodos para estimar os seus parâmetros. Para cada modelo introduzido, foram realizados estudos de simulação para comparar os métodos de estimação que foram usados.
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model