977 resultados para Ammonium Sulfate


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An antimicrobial peptide produced by a bacterium isolated from the effluent pond of a bovine abattoir was purified and characterized. The strain was characterized by biochemical profiling and 16S rDNA sequencing as Pseudomonas sp. The antimicrobial peptide was purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography. Direct activity on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was observed. A major band on SDS-PAGE suggested that the antimicrobial peptide has a molecular mass of about 30 kDa. The substance was inhibitory to a broad range of indicator strains, including pathogenic and food spoilage bacteria such as Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, among other. The partially purified antimicrobial substance remained active over a wide temperature range and was resistant to all proteases tested. This substance showed different properties than other antimicrobials from Pseudomonas species, suggesting a novel antimicrobial peptide was characterized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of initial xylose concentration and nutritional supplementation of brewer`s spent grain hydrolysate on xylitol production by Candida guilliermondii were evaluated using experimental design methodology. The hydrolysate containing 55, 75 or 95 g/l xylose, supplemented or not with nutrients (calcium chloride, ammonium sulfate and rice bran extract), was used as fermentation medium. The increase in xylitol yield and productivity was related to the increase of initial xylose concentration, but up to a certain limit. above of which the yeast performance was not improved. The hydrolysate supplementation with nutrients did not interfere with xylose-to-xylitol conversion. By using the statistic tool the best conditions for maximum xylitol production were found. which consisted in using the non-supplemented hydrolysate containing 70 g/l initial xylose concentration. Under these conditions, a xylitol yield of 0.78 g/g and productivity of 0.58 g/(l h) were achieved. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono- and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a d-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3-a dagger 1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic acids used for neutralization and urea or ammonium sulfate used as nitrogen sources. Phosphoric acid improved color and removal of phenolic compounds. d-Gluconic acid enhanced cell growth. Ammonium sulfate increased cell yield and maximum specific cell growth rate independently of the acid used for neutralization. The highest xylitol yield (0.61 g(xylitol)/g(xylose)) and volumetric productivity (0.18 g(xylitol)/g(xylose) l) were obtained in hydrolysate neutralized with phosphoric acid. However, when urea was the nitrogen source the cell yield was less than half of that obtained with ammonium sulfate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aims to characterize corrosion products formed on copper samples exposed to synthetic rainwater of Rio Janeiro and Sao Paulo. XRD and XPS were employed to determine their composition, while electrochemical techniques were used to evaluate their protective properties. XRD and XPS indicated the thickening of the corrosion layer with time. Electrochemical results showed that the protectiveness of the corrosion layer depends on the solution composition. Based on our findings a corrosion mechanism for copper in simulated rainwater is proposed where the role of NH(4)(+) ions in the cuprite layer partial regeneration is taken into account. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The salt-induced precipitation of lysozyme from aqueous solutions was studied through precipitation assays in which the equilibrium compositions of the coexisting phases were determined. Lysozyme precipitation experiments were carried out at 5, 15 and 25 degrees C and pH 7.0 with ammonium sulfate, sodium sulfate and sodium chloride as precipitating agents. In these experiments a complete separation of the coexisting phases (liquid and solid) could not be achieved. Nevertheless it was possible to determine the composition of the precipitate. The enzymatic activity of lysozyme in the supernatant phase as well as in the precipitate phase was also determined. The activity balance suggests that there is a relationship between the composition of the true precipitate and the total activity recovery. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The salt-induced precipitation of lysozyme from aqueous solutions was studied at 25 degrees C and various pH values by cloud-point investigations, precipitation experiments (analysing the compositions of the coexisting phases) and microscopic investigations of the precipitates. Sodium sulphate as well as ammonium sulphate were used to induce the precipitation. The experimental results are discussed and used to develop a scheme of the phase equilibrium in water-rich aqueous solutions of lysozyme and either Na2SO4 or (NH4)(2)SO4. (C) 2007 Elsevier B.V All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of several carbon sources on the production of mycelial-bound beta-glucosidase by Humicola grisea var. thermoidea in submerged fermentation was investigated. Maximum production occurred when cellulose was present in the culture medium, but higher specific activities were achieved with cellobiose or sugarcane bagasse. Xylose or glucose (1%) in the reaction medium stimulated beta-glucosidase activity by about 2-fold in crude extracts from mycelia grown in sugarcane bagasse. The enzyme was purified by ammonium sulfate precipitation, followed by Sephadex G-200 and DEAE-cellulose chromatography, showing a single band in PAGE and SDS-PAGE. The beta-glucosidase had a carbohydrate content of 43% and showed apparent molecular masses of 57 and 60 kDa, as estimated by SDS-PAGE and gel filtration, respectively. The optimal pH and temperature were 6.0 and 50 degrees C, respectively. The purified enzyme was thermostable up to 60 min in water at 55 degrees C and showed half-lives of 7 and 14 min when incubated in the absence or presence of 50 mM glucose, respectively, at 60 degrees C. The enzyme hydrolyzed p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-galactopyranoside, p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-xylopyranoside, o-nitrophenyl-beta-D-galactopyranoside, lactose, and cellobiose. The best synthetic and natural substrates were p-nitrophenyl-beta-D-fucopyranoside and cellobiose, respectively. Purified enzyme activity was stimulated up to 2-fold by glucose or xylose at concentrations from 25 to 200 mM. The addition of purified or crude beta-glucosidase to a reaction medium containing Trichoderma reesei cellulases increased the saccharification of sugarcane bagasse by about 50%. These findings suggest that H. grisea var. thermoidea beta-glucosidase has a potential for biotechnological applications in the bioconversion of lignocellulosic materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four Saccharomyces cerevisiae Brazilian industrial ethanol production strains were grown, under shaken and static conditions, in media containing 22% (w/v) sucrose supplemented with nitrogen sources varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Sucrose fermentations by Brazilian industrial ethanol production yeasts strains were strongly affected by both the structural complexity of the nitrogen source and the availability of oxygen. Data suggest that yeast strains vary in their response to the nitrogen source`s complex structure and to oxygen availability. In addition, the amount of trehalose produced could be correlated with the fermentation performance of the different yeasts, suggesting that efficient fuel ethanol production depends on finding conditions which are appropriate for a particular strain, considering demand and dependence on available nitrogen sources in the fermentation medium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucose and fructose fermentations by industrial yeasts strains are strongly affected by both the structural complexity of the nitrogen Source and the availability of oxygen. In this Study two Saccharomyces cerevisiae industrial wine strains were grown, under shaken and static conditions, in a media containing either a) 20% (w/v) glucose, or b) 10% (w/v) fructose and 10% (w/v) glucose or c) 20% (w/v) fructose, all supplemented with nitrogen Sources varying from a single ammonium salt (ammonium Sulfate) to free amino acids (casamino acids) and peptides (peptone). Data Suggest that 1 complex Structured nitrogen source is not submitted to the same control mechanisms as those involved in the utilization of simpler structured nitrogen Sources, and mutual interaction between carbon and nitrogen Sources, including the mechanisms involved ill the regulation of aerobic/anaerobic metabolism, may play in important role in defining yeast fermentation performance and the differing response to the structural complexity of the nitrogen Source, with a strong impact oil fermentation performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Ordos Plateau in China is covered with up to 300,000 ha of peashrub (Caragana) which is the dominant natural vegetation and ideal for fodder production. To exploit peashrub fodder, it is crucially important to optimize the culture conditions, especially culture substrate to produce pectinase complex. In this study, a new prescription process was developed. The process, based on a uniform experimental design, first optimizes the solid substrate and second, after incubation, applies two different temperature treatments (30 degrees C for the first 30 h and 23 degrees C for the second 42 h) in the fermentation process. A multivariate regression analysis is applied to a number of independent variables (water, wheat bran, rice dextrose, ammonium sulfate, and Tween 80) to develop a predictive model of pectinase activity. A second-degree polynomial model is developed which accounts for an excellent proportion of the explained variation (R-2 = 97.7%). Using unconstrained mathematical programming, an optimized substrate prescription for pectinase production is subsequently developed. The mathematical analysis revealed that the optimal formula for pectinase production from Aspergillus niger by solid fermentation under the conditions of natural aeration, natural substrate pH (about 6.5), and environmental humidity of 60% is rice dextrose 8%, wheat bran 24%, ammonium sulfate ((NH4)(2)SO4) 6%, and water 61%. Tween 80 was found to have a negative effect on the production of pectinase in solid substrate. With this substrate prescription, pectinase produced by solid fermentation of A. niger reached 36.3IU/(gDM). Goats fed on the pectinase complex obtain an incremental increase of 0.47 kg day(-1) during the initial 25 days of feeding, which is a very promising new feeding prospect for the local peashrub. It is concluded that the new formula may be very useful for the sustainable development of and and semiarid pastures such as those of the Ordos Plateau. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT New nitrogen fertilizers are available in the market actually, however, does not have results on the efficiency of the Cerrado conditions. With that objective of this study was to evaluate the effect of urea including stabilized and controlled release urea on yield of irrigated common beans (Phaseolus vulgaris L) in no-tillage system. The experiment was conducted in the winter crop, at Embrapa Arroz e Feijão, in Santo Antônio de Goiás, State of Goiás, Brazil. The experimental design was randomized blocks, with five replicates. Treatments consisted of five N sources (urea, urea + NBPT, urea + polymer, ammonium sulphate, and ammonium nitrate) and a control (without N) being applied 20 kg ha-1 of N at sowing and 80 kg ha-1 onf N in topdressing. We evaluated the chlorophyll content in leaves of common beans, the leaf N content and dry mass weight (MSPA) in the flowering of common beans, the number of pods per plant, number of grains per pod, mass of 100 grains, grain yield and final stand of the common beans. The sources of nitrogen fertilizer did not influence, leaf N content, the mass of MSPA and the relative chlorophyll index of common beans. The use of polymerized urea and urea with urease inhibitor, did not produce increases in the number of grains per pod, number of pods per plant, mass of 100 grains and common beans yield compared to traditional sources of N, urea, ammonium sulfate and ammonium nitrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new flow-injection analytical procedure is proposed for the determination of the total amount of polyphenols in wines; the method is based on the formation of a colored complex between 4-aminoantipyrine and phenols, in the presence of an oxidizing reagent. The oxidizing agents hexacyanoferrate(III), peroxodisulfate, and tetroxoiodate(VII) were tested. Batch trials were first performed to select appropriate oxidizing agents, pH, and concentration ratios of reagents, on the basis of their effect on the stability of the colored complex. Conditions selected as a result of these trials were implemented in a flow-injection analytical system in which the influence of injection volume, flow rate, and reaction- coil length, was evaluated. Under the optimum conditions the total amount of polyphenols, expressed as gallic acid, could be determined within a concentration range of 36 to 544 mg L–1, and with a sensitivity of 344 L mol–1 cm–1 and an RSD <1.1%. The reproducibility of analytical readings was indicative of standard deviations <2%. Interference from sugars, tartaric acid, ascorbic acid, methanol, ammonium sulfate, and potassium chloride was negligible. The proposed system was applied to the determination of total polyphenols in red wines, and enabled analysis of approximately 55 samples h–1. Results were usually precise and accurate; the RSD was <3.9% and relative errors, by the Folin–Ciocalteu method, <5.1%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reduction of complement activation through an alteration of the Fc fragment of immunoglobulins by b-propiolactone treatment was carried out in equine antisera raised against rabies virus, Bothrops venoms and diphtherial toxin. Results were evaluated by means of an anaphylactic test performed on guinea-pigs, and compared to the ones obtained with the same sera purified by saline precipitation (ammonium sulfate), followed or not by enzymatic digestion with pepsin. Protein purity levels for antibothropic serum were 184.5 mg/g and 488.5 mg/g in b-propiolactone treated and pepsin-digested sera, respectively. The recovery of specific activity was 100% and 62.5% when using antibothropic serum treated by b-propiolactone and pepsin digestion, respectively. The antidiphtherial and anti-rabies sera treated with b-propiolactone and pepsin presented protein purity levels of 5,698 and 7,179 Lf/g, 16,233 and 6,784 IU/g, respectively. The recovery of specific activity for these antisera were 88.8%, 77.7%, 100% and 36,5%, respectively. b-propiolactone treatment induced a reduction in complement activation, tested "in vivo", without significant loss of biological activity. This treatment can be used in the preparation of heterologous immunoglobulins for human use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biotecnologia)