951 resultados para Amazon squall lines
Resumo:
The equations governing saltwater intrusion in coastal aquifers are complex. Backward Euler time stepping approaches are often used to advance the solution to these equations in time, which typically requires that small time steps be taken in order to ensure that an accurate solution is obtained. We show that a method of lines approach incorporating variable order backward differentiation formulas can greatly improve the efficiency of the time stepping process.
Resumo:
A Split System Approach (SSA) based methodology is presented to assist in making optimal Preventive Maintenance decisions for serial production lines. The methodology treats a production line as a complex series system with multiple PM actions over multiple intervals. Both risk related cost and maintenance related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimized considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimize Total Expected Cost (TEC) for asset maintenance.
Resumo:
When asymptotic series methods are applied in order to solve problems that arise in applied mathematics in the limit that some parameter becomes small, they are unable to demonstrate behaviour that occurs on a scale that is exponentially small compared to the algebraic terms of the asymptotic series. There are many examples of physical systems where behaviour on this scale has important effects and, as such, a range of techniques known as exponential asymptotic techniques were developed that may be used to examinine behaviour on this exponentially small scale. Many problems in applied mathematics may be represented by behaviour within the complex plane, which may subsequently be examined using asymptotic methods. These problems frequently demonstrate behaviour known as Stokes phenomenon, which involves the rapid switches of behaviour on an exponentially small scale in the neighbourhood of some curve known as a Stokes line. Exponential asymptotic techniques have been applied in order to obtain an expression for this exponentially small switching behaviour in the solutions to orginary and partial differential equations. The problem of potential flow over a submerged obstacle has been previously considered in this manner by Chapman & Vanden-Broeck (2006). By representing the problem in the complex plane and applying an exponential asymptotic technique, they were able to detect the switching, and subsequent behaviour, of exponentially small waves on the free surface of the flow in the limit of small Froude number, specifically considering the case of flow over a step with one Stokes line present in the complex plane. We consider an extension of this work to flow configurations with multiple Stokes lines, such as flow over an inclined step, or flow over a bump or trench. The resultant expressions are analysed, and demonstrate interesting implications, such as the presence of exponentially sub-subdominant intermediate waves and the possibility of trapped surface waves for flow over a bump or trench. We then consider the effect of multiple Stokes lines in higher order equations, particu- larly investigating the behaviour of higher-order Stokes lines in the solutions to partial differential equations. These higher-order Stokes lines switch off the ordinary Stokes lines themselves, adding a layer of complexity to the overall Stokes structure of the solution. Specifically, we consider the different approaches taken by Howls et al. (2004) and Chap- man & Mortimer (2005) in applying exponential asymptotic techniques to determine the higher-order Stokes phenomenon behaviour in the solution to a particular partial differ- ential equation.
Resumo:
The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.
Resumo:
Signalling layout design is one of the keys to railway operations with fixed-block signalling system and it also carries direct effect on overall train efficiency and safety. Based on an analysis to system objectives, this paper presents an optimization model with two objectives in order to devise an efficient signalling layout scheme. Taking into account the present railway line design practices in China, the paper describes steps of the computer-based signalling layout optimisation with real-coded genetic algorithms. A computer-aided system, based on train movement simulator, has also been employed to assist the optimisation process. A case study on a practical railway line has been conducted to make comparisons between the proposed GA-based approach and the current practices. The results illustrate the improved performance of the proposed approach in reducing signal block joints and shortening minimum train service headway.
Resumo:
A collaborative process reviewed from the inside: David megarrity and Clare carmody examine what it's like to make a 'real play' with 8-12 year olds.
Resumo:
Many of the power utilities around the world experienced spurious tripping of directional earth fault relays in their mesh distribution networks due to induced circulating currents. This circulating current is zero sequence and induced in the healthy circuit due to the zero sequence current flow resulting from a ground fault of a parallel circuit. This paper quantitatively discusses the effects of mutual coupling on earth fault protection of distribution systems. An actual spurious tripping event is analyzed to support the theory and to present options for improved resilience to spurious tripping.
Resumo:
An experimental programme in 2007 used three air suspended heavy vehicles travelling over typical urban roads to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents methodology, interim analysis and partial results from that programme. Alterations to dynamic measures derived from axle-to-chassis forces for the case of standard-sized longitudinal air lines vs. the test case where larger longitudinal air lines were fitted are presented and discussed. This leads to conclusions regarding the possibility that dynamic loadings between heavy vehicle suspensions and chassis may be reduced by fitting larger longitudinal air lines to air-suspended heavy vehicles. Reductions in the shock and vibration loads to heavy vehicle suspension components could lead to lighter and more economical chassis and suspensions. This could therefore lead to reduced tare and increased payloads without an increase in gross vehicle mass.