998 resultados para Alkaloids -- Synthesis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synthesis of the unsym. Homalium alkaloids hopromine (I, R = H, R1 = pentyl), hoprominol (I, R = OH, R1 = pentyl) and hopramalinol (I, R = OH, R1 = Ph), in diastereoisomeric mixt. form, is reported. The component eight-membered azalactams are first prepd. N-(3-halogenopropyl)-4-pentyl- and 4-heptylazetidin-2-ones are aminated and ring expanded in liq. ammonia to give, after reductive methylation, the corresponding 4-alkyl-5-methyl-1,5-diazacyclooctan-2-ones. Synthesis of the 4-(2-hydroxyheptyl)-5-methyl-1,5-diazacyclooctan-2-one required for hoprominol and hopromalinol is carried out via 4-allyl ?-lactam ring expansion to the eight-membered 4-allylazalactam, followed by methylation, epoxidn. and epoxide opening with lithium dibutylcuprate. A similar epoxidn.-cuprate sequence was carried out on the epoxypropyl ?-lactam, as its N-tert-butyldimethylsilyl deriv., and led to a convenient copper-catalyzed N- to O-migration of the protection; this migration is examd. Alkylation gave O-tert-butyldimethylsilyl-protected N-(3-chloropropyl)-4-(2-hydroxyheptyl)azetidin-2-one which could be aminated and transamidated in excellent yield, to give, after methylation, a superior sequence to the required eight-membered hydroxy azalactam. Although satisfactory for attachment of the first azalactam unit, a dibromobutane coupling system proved unreactive for the second. Couplings with unmethylated, methylated, and benzyloxycabronyl-protected azalactams were examd. using (E)-1,4-dibromobutene and (Z)-1,4-dichlorobutene as the bridging unit. Employing the latter, coupling the first N-methylated azalactam with potassium bis(trimethylsilyl)amide as the base, and then the second with bis(trimethylsilyl)amide-sodium hydride as the base system, provided a satisfactory synthetic outcome. Hydrogenation under acidic conditions gave the unsym. structures hopromine, hoprominol and hopromalinol, as well as the more simple and sym. alkaloid, homaline.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biotransformation of acridine, dictamnine and 4-chlorofuro[2,3-b]quinolone, using whole cells of Sphingomonas yanoikuyae B8/36, yielded five enantiopure cyclic cis-dihydrodiols, from biphenyl dioxygenase-catalysed dihydroxylation of the carbocyclic rings. cis-Dihydroxylation of the furan ring in dictamnine and 4-chlorofuro[2,3-b] quinoline, followed by ring opening and reduction, yielded two exocyclic diols. The structures and absolute configurations of metabolites have been determined by spectroscopy and stereochemical correlation methods. Enantiopure arene oxide metabolites of acridine and dictamnine have been synthesised, from the corresponding cis-dihydrodiols. The achiral furoquinoline alkaloids robustine, gamma-fagarine, haplopine, isohaplopine-3,3'-dimethylallylether and pteleine have been obtained, from either cis-dihydrodiol, catechol or arene oxide metabolites of dictamnine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two efficient, regio- and stereo controlled synthetic approaches to the synthesis of racemic analogs of pancratistatin have been accomplished and they serve as the model systems for the total synthesis of optically active 7-deoxy-pancratistatin. In the Diels-Alder approach, an efficient [4+2] cycloaddition of 3,4-methylenedioxyco- nitrostyrene with Danishefsky's diene to selectively form an exo-nitro adduct has been developed as the key step in the construction of the C-ring of the target molecule. In the Michael addition approach, the key step was a conjugate addition of an organic zinc-cuprate to the 3,4-methylenedioxy-(B-nitrostyrene, followed by a diastereocontroUed closure to form the cyclohexane C-ring of the target molecule via an intramolecular nitro-aldol cyclization on a neutral alumina surface. A chair-like transition state for such a cyclization has been established and such a chelation controlled transition state can be useful in the prediction of diastereoselectivity in other related 6-exo-trig nitroaldol reactions. Cyclization of the above products fi^om both approaches by using a Bischler-Napieralski type reaction afforded two lycoricidine derivatives 38 and 50 in good yields. The initial results from the above modeling studies as well as the analysis of the synthetic strategy were directed to a chiral pool approach to the total synthesis of optically active 7-deoxy-pancratistatin. Selective monsilylation and iodination of Ltartaric acid provided a chiral precursor for the proposed key Michael transformation. The outlook for the total synthesis of 7-deoxy-pancratistatin by this approach is very promising.A concise synthesis of novel designed, optically pure, Cz-symmetrical disulfonylamide chiral ligands starting from L-tartaric acid has also been achieved. This sequence employs the metallation of indole followed by Sfj2 replacement of a dimesylate as the key step. The activity for this Cz-symmetric chiral disulfonamide ligand in the catalytic enantioselective reaction has been confirmed by nucleophilic addition to benzaldehyde in the disulfonamide-Ti (0-i-Pr)4-diethylzinc system with a 48% yield and a 33% e.e. value. Such a ligand tethered with a suitable metal complex should be also applicable towards the total synthesis of 7-deoxy-pancratistatin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present studies describe, as a primary goal, our recent progess toward the synthesis of morphine alkaloids from aromatic precursors. Model substrates were synthesized which allowed investigation into Diels-Alder, radical cascade, and palladium-catalyzed bond-forming reactions as possible routes to the morphine alkaloid skeleton. As a secondary objective, three separate series of aromatic substrates were subjected to whole-cell oxidation with Escherichia coli JM 109 (pDTG601), a recombinant organism over-expressing the enzyme toluene dioxygenase. Included in this study were bromothioanisoles, dibromobenzenes, and cyclopropylbenzene derivatives. The products of oxidation were characterized by chemical conversion to known intermediates. The synthetic utility of one of these bacterial metabolites, derived from oxidation of o-dibromobenezene, was demonstrated by chemical conversion to (-)conduritol E.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present studies describe our recent progress in target oriented synthesis of complex organic molecules from aromatic precursors. The latest synthetic approaches toward vinca alkaloids are described and include the construction of model substrates for the investigation into Diels-Alder, radical cascade, and tandem Michael addition reactions as possible routes to the family of alkaloids. Also described are the chemoenzymatic syntheses of the natural product (-)-idesolide and unnatural polyhydroxylated pyrrolidines generated from the biotransformation of benzoic acid with Ralstonia eutropha B9.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The selective reduction of one of the three carboxyl groups of two chiral citric acid derivatives to the corresponding aldehydes, under Rosenmund conditions, are reported together with the application of these aldehydes to the syntheses of the ester side chains of some potently antileukemic Cephalotaxus alkaloids e.g. anhydroharringtonine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A versatile and concise approach for the stereoselective synthesis of mono-, di-, and trihydroxylated indolizidines is presented in four to six steps from Cbz-prolinal and a diazophosphonate. The key steps involved a Wolff rearrangement, followed by a stereoselective dihydroxylation/epoxidation reaction, from an alpha,beta-unsaturated diazoketone. The strategy also permits extension to the synthesis of many natural hydroxylated indolizidine alkaloids as demonstrated in the formal synthesis of pumiliotoxin 251D.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the last fifteen years organocatalysis emerged as a powerful tool for the enantioselective functionalization of the most different organic molecules. Both C-C and C-heteroatom bonds can be formed in an enantioselective fashion using many types of catalyst and the field is always growing. Many kind of chiral catalysts have emerged as privileged, but among them Proline, cinchona alkaloids, BINOL, and their derivatives showed to be particularly useful chiral scaffolds. This thesis, after a short presentation of many organocatalysts and activation modes, focuses mainly on cinchona alkaloid derived primary amines and BINOL derived chiral Brønsted acids, describing their properties and applications. Then, in the experimental part, these compounds are used for the catalysis of new transformations. The enantioselective Friedel-Crafts alkylation of cyclic enones with naphthols using cinchona alkaloid derived primary amines as catalysts is presented and discussed. The results of this work were very good and this resulted also in a publication. The same catalysts are then used to accomplish the enantioselective addition of indoles to cyclic enones. Many catalysts in combination with many acids as co-catalysts were tried and the reaction was fully studied. Selective N-alkylation was obtained in many cases, in combination with quite good to good enantioselectivities. Also other kind of catalysis were tried for this reaction, with interesting results. Another aza-Michael reaction between OH-free hydroxylamines and nitrostyrene using cinchona alkaloid derived thioureas is briefly discussed. Then our attention focused on Brønsted acid catalyzed transformations. With this regard, the Prins cyclization, a reaction never accomplished in an enantioselective fashion until now, is presented and developed. The results obtained are promising. In the last part of this thesis the work carried out abroad is presented. In Prof. Rueping laboratories, an enantioselective Nazarov cyclization using cooperative catalysis and the enantioselective desymmetrization of meso-hydrobenzoin catalyzed by Brønsted acid were studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we presented several aspects regarding the possibility to use readily available propargylic alcohols as acyclic precursors to develop new stereoselective [Au(I)]-catalyzed cascade reactions for the synthesis of highly complex indole architectures. The use of indole-based propargylic alcohols of type 1 in a stereoselective [Au(I)]-catalyzed hydroindolynation/immiun trapping reactive sequence opened access to a new class of tetracyclic indolines, dihydropyranylindolines A and furoindolines B. An enantioselective protocol was futher explored in order to synthesize this molecules with high yields and ee. The suitability of propargylic alcohols in [Au(I)]-catalyzed cascade reactions was deeply investigated by developing cascade reactions in which was possible not only to synthesize the indole core but also to achieve a second functionalization. Aniline based propargylic alcohols 2 were found to be modular acyclic precursors for the synthesis of [1,2-a] azepinoindoles C. In describing this reactivity we additionally reported experimental evidences for an unprecedented NHCAu(I)-vinyl specie which in a chemoselective fashion, led to the annulation step, synthesizing the N1-C2-connected seven membered ring. The chemical flexibility of propargylic alcohols was further explored by changing the nature of the chemical surrounding with different preinstalled N-alkyl moiety in propargylic alcohols of type 3. Particularly, in the case of a primary alcohol, [Au(I)] catalysis was found to be prominent in the synthesis of a new class of [4,3-a]-oxazinoindoles D while the use of an allylic alcohol led to the first example of [Au(I)] catalyzed synthesis and enantioselective functionalization of this class of molecules (D*). With this work we established propargylic alcohols as excellent acyclic precursor to developed new [Au(I)]-catalyzed cascade reaction and providing new catalytic synthetic tools for the stereoselective synthesis of complex indole/indoline architectures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main research theme of this dissertation is the synthesis of g- and b-carbolines using a metal-catalyzed [2+2+2] cycloaddition strategy of tethered alkynyl-ynamides (diynes) with nitriles. g- and b-carbolines form the core of a large group of natural product and represent important targets for organic chemists. Many of these carbolines showed pharmacological effects ranging from anti-tumor to anxiolytic and anti-HIV activity. A model study with N-Ethynyl-N-tosyl-2-(2-phenylethynyl)aniline and methyl cyanoformate showed that rhodium-based catalysts promote efficiently the reaction. A further optimization showed that the regioselectivity of the reaction can be tuned by the choice of the solvent or by the catalytic system. Application to a larger scope of diynes showed that the regioselectivity strongly depends on the type of substitution of the alkynyl moieties, giving regioselectivities in the range g:b = 1/0 to g:b = 0/1. This [2+2+2] cycloaddition approach for the synthesis of the g- and b-carboline cores was successfully applied to the first total synthesis of Isoperlolyrine and the total synthesis of Perlolyrine. Extension of this strategy to heterocumulenes as cycloaddition partners allowed the synthesis of a g-carbolinone, a thiopyrano[3,4-b]indol-3-imine and thiopyranothiones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of pyrrolidine and indolizidine derivatives through radical carboazidation of alkenes with alpha-iodoketones, followed by reductive amination, is described. When properly substituted, further lactamization afforded pyrrolizidinones in good yield. This carboazidation/reductive amination sequence was efficiently applied to the total synthesis of three different simple alkaloids, including (+/-)-monomorine I.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rapid access to the ABCE ring system of the C-20 diterpene alkaloids was achieved by silver (I) promoted intramolecular Friedel-Crafts arylation of a functional group specific 5-bromo-3-azabicyclo[3.3.1]nonane derivative. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A short but uneventful formal synthesis of perhydrogephyrotoxin 3 from readily available tricyclo[5.2.1.0(2,6)]decane derivative 8 via the intermediacy of the cis-hydroindanone 13 is reported. This work constitutes further demonstration of the carbocycle-heterocycle equivalency theme in the synthesis of alkaloids.