984 resultados para Algorithmic Graph Theory
Resumo:
Nowadays, the development of the photovoltaic (PV) technology is consolidated as a source of renewable energy. The research in the topic of maximum improvement on the energy efficiency of the PV plants is today a major challenge. The main requirement for this purpose is to know the performance of each of the PV modules that integrate the PV field in real time. In this respect, a PLC communications based Smart Monitoring and Communications Module, which is able to monitor at PV level their operating parameters, has been developed at the University of Malaga. With this device you can check if any of the panels is suffering any type of overriding performance, due to a malfunction or partial shadowing of its surface. Since these fluctuations in electricity production from a single panel affect the overall sum of all panels that conform a string, it is necessary to isolate the problem and modify the routes of energy through alternative paths in case of PV panels array configuration.
Resumo:
In questo elaborato ci siamo occupati della legge di Zipf sia da un punto di vista applicativo che teorico. Tale legge empirica afferma che il rango in frequenza (RF) delle parole di un testo seguono una legge a potenza con esponente -1. Per quanto riguarda l'approccio teorico abbiamo trattato due classi di modelli in grado di ricreare leggi a potenza nella loro distribuzione di probabilità. In particolare, abbiamo considerato delle generalizzazioni delle urne di Polya e i processi SSR (Sample Space Reducing). Di questi ultimi abbiamo dato una formalizzazione in termini di catene di Markov. Infine abbiamo proposto un modello di dinamica delle popolazioni capace di unificare e riprodurre i risultati dei tre SSR presenti in letteratura. Successivamente siamo passati all'analisi quantitativa dell'andamento del RF sulle parole di un corpus di testi. Infatti in questo caso si osserva che la RF non segue una pura legge a potenza ma ha un duplice andamento che può essere rappresentato da una legge a potenza che cambia esponente. Abbiamo cercato di capire se fosse possibile legare l'analisi dell'andamento del RF con le proprietà topologiche di un grafo. In particolare, a partire da un corpus di testi abbiamo costruito una rete di adiacenza dove ogni parola era collegata tramite un link alla parola successiva. Svolgendo un'analisi topologica della struttura del grafo abbiamo trovato alcuni risultati che sembrano confermare l'ipotesi che la sua struttura sia legata al cambiamento di pendenza della RF. Questo risultato può portare ad alcuni sviluppi nell'ambito dello studio del linguaggio e della mente umana. Inoltre, siccome la struttura del grafo presenterebbe alcune componenti che raggruppano parole in base al loro significato, un approfondimento di questo studio potrebbe condurre ad alcuni sviluppi nell'ambito della comprensione automatica del testo (text mining).
Resumo:
La seguente tesi propone un’introduzione al geometric deep learning. Nella prima parte vengono presentati i concetti principali di teoria dei grafi ed introdotta una dinamica di diffusione su grafo, in analogia con l’equazione del calore. A seguire, iniziando dal linear classifier verranno introdotte le architetture che hanno portato all’ideazione delle graph convolutional networks. In conclusione, si analizzano esempi di alcuni algoritmi utilizzati nel geometric deep learning e si mostra una loro implementazione sul Cora dataset, un insieme di dati con struttura a grafo.
Resumo:
This paper is part of a work in progress whose goal is to construct a fast, practical algorithm for the vertex separation (VS) of cactus graphs. We prove a \main theorem for cacti", a necessary and sufficient condition for the VS of a cactus graph being k. Further, we investigate the ensuing ramifications that prevent the construction of an algorithm based on that theorem only.
Resumo:
We investigate the NP-complete problem Vertex Separation (VS) on Maximal Outerplanar Graphs (mops). We formulate and prove a “main theorem for mops”, a necessary and sufficient condition for the vertex separation of a mop being k. The main theorem reduces the vertex separation of mops to a special kind of stretchability, one that we call affixability, of submops.
Resumo:
ACM Computing Classification System (1998): G.2.2.
Resumo:
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels
Resumo:
The (n, k)-arrangement interconnection topology was first introduced in 1992. The (n, k )-arrangement graph is a class of generalized star graphs. Compared with the well known n-star, the (n, k )-arrangement graph is more flexible in degree and diameter. However, there are few algorithms designed for the (n, k)-arrangement graph up to present. In this thesis, we will focus on finding graph theoretical properties of the (n, k)- arrangement graph and developing parallel algorithms that run on this network. The topological properties of the arrangement graph are first studied. They include the cyclic properties. We then study the problems of communication: broadcasting and routing. Embedding problems are also studied later on. These are very useful to develop efficient algorithms on this network. We then study the (n, k )-arrangement network from the algorithmic point of view. Specifically, we will investigate both fundamental and application algorithms such as prefix sums computation, sorting, merging and basic geometry computation: finding convex hull on the (n, k )-arrangement graph. A literature review of the state-of-the-art in relation to the (n, k)-arrangement network is also provided, as well as some open problems in this area.
Resumo:
Abstract: Root and root finding are concepts familiar to most branches of mathematics. In graph theory, H is a square root of G and G is the square of H if two vertices x,y have an edge in G if and only if x,y are of distance at most two in H. Graph square is a basic operation with a number of results about its properties in the literature. We study the characterization and recognition problems of graph powers. There are algorithmic and computational approaches to answer the decision problem of whether a given graph is a certain power of any graph. There are polynomial time algorithms to solve this problem for square of graphs with girth at least six while the NP-completeness is proven for square of graphs with girth at most four. The girth-parameterized problem of root fining has been open in the case of square of graphs with girth five. We settle the conjecture that recognition of square of graphs with girth 5 is NP-complete. This result is providing the complete dichotomy theorem for square root finding problem.
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.
Resumo:
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels
Resumo:
Verbal fluency is the ability to produce a satisfying sequence of spoken words during a given time interval. The core of verbal fluency lies in the capacity to manage the executive aspects of language. The standard scores of the semantic verbal fluency test are broadly used in the neuropsychological assessment of the elderly, and different analytical methods are likely to extract even more information from the data generated in this test. Graph theory, a mathematical approach to analyze relations between items, represents a promising tool to understand a variety of neuropsychological states. This study reports a graph analysis of data generated by the semantic verbal fluency test by cognitively healthy elderly (NC), patients with Mild Cognitive Impairment – subtypes amnestic(aMCI) and amnestic multiple domain (a+mdMCI) - and patients with Alzheimer’s disease (AD). Sequences of words were represented as a speech graph in which every word corresponded to a node and temporal links between words were represented by directed edges. To characterize the structure of the data we calculated 13 speech graph attributes (SGAs). The individuals were compared when divided in three (NC – MCI – AD) and four (NC – aMCI – a+mdMCI – AD) groups. When the three groups were compared, significant differences were found in the standard measure of correct words produced, and three SGA: diameter, average shortest path, and network density. SGA sorted the elderly groups with good specificity and sensitivity. When the four groups were compared, the groups differed significantly in network density, except between the two MCI subtypes and NC and aMCI. The diameter of the network and the average shortest path were significantly different between the NC and AD, and between aMCI and AD. SGA sorted the elderly in their groups with good specificity and sensitivity, performing better than the standard score of the task. These findings provide support for a new methodological frame to assess the strength of semantic memory through the verbal fluency task, with potential to amplify the predictive power of this test. Graph analysis is likely to become clinically relevant in neurology and psychiatry, and may be particularly useful for the differential diagnosis of the elderly.
Resumo:
This paper addresses the functional reliability and the complexity of reconfigurable antennas using graph models. The correlation between complexity and reliability for any given reconfigurable antenna is defined. Two methods are proposed to reduce failures and improve the reliability of reconfigurable antennas. The failures are caused by the reconfiguration technique or by the surrounding environment. These failure reduction methods proposed are tested and examples are given which verify these methods.
Resumo:
The existence of a small partition of a combinatorial structure into random-like subparts, a so-called regular partition, has proven to be very useful in the study of extremal problems, and has deep algorithmic consequences. The main result in this direction is the Szemeredi Regularity Lemma in graph theory. In this note, we are concerned with regularity in permutations: we show that every permutation of a sufficiently large set has a regular partition into a small number of intervals. This refines the partition given by Cooper (2006) [10], which required an additional non-interval exceptional class. We also introduce a distance between permutations that plays an important role in the study of convergence of a permutation sequence. (C) 2011 Elsevier B.V. All rights reserved.