909 resultados para Algebraic Geometric Codes
Resumo:
Maschler et al. (1979) caracteritzen geomètricament la intersecció del kernel i del core en els jocs cooperatius, demostrant que les distribucions que pertanyen a ambdós conjunts es troben en el punt mig d’un cert rang de negociació entre parelles de jugadors. En el cas dels jocs d’assignació, aquesta caracterització vol dir que el kernel només conté aquells elements del core on el màxim que un jugador pot transferir a una parella òptima és igual al màxim que aquesta parella li pot transferir, sense sortir-se’n del core. En aquest treball demostrem que el nucleolus d’un joc d’assignació queda caracteritzat si requerim que aquesta propietat de bisecció es compleixi no només per parelles, sinó també per coalicions entre sectors aparellades òptimament.
Resumo:
Maschler et al. (1979) caracteritzen geomètricament la intersecció del kernel i del core en els jocs cooperatius, demostrant que les distribucions que pertanyen a ambdós conjunts es troben en el punt mig d’un cert rang de negociació entre parelles de jugadors. En el cas dels jocs d’assignació, aquesta caracterització vol dir que el kernel només conté aquells elements del core on el màxim que un jugador pot transferir a una parella òptima és igual al màxim que aquesta parella li pot transferir, sense sortir-se’n del core. En aquest treball demostrem que el nucleolus d’un joc d’assignació queda caracteritzat si requerim que aquesta propietat de bisecció es compleixi no només per parelles, sinó també per coalicions entre sectors aparellades òptimament.
Resumo:
In this paper, we proposed a new two-parameter lifetime distribution with increasing failure rate, the complementary exponential geometric distribution, which is complementary to the exponential geometric model proposed by Adamidis and Loukas (1998). The new distribution arises on a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulas for its reliability and failure rate functions, moments, including the mean and variance, variation coefficient, and modal value. The parameter estimation is based on the usual maximum likelihood approach. We report the results of a misspecification simulation study performed in order to assess the extent of misspecification errors when testing the exponential geometric distribution against our complementary one in the presence of different sample size and censoring percentage. The methodology is illustrated on four real datasets; we also make a comparison between both modeling approaches. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work presents an approach for geometric solution of an optimal power flow (OPF) problem for a two bus system (a slack and a PV busses). Additionally, the geometric relationship between the losses minimization and the increase of the reactive margin and, therefore, the maximum loading point, is shown. The algebraic equations for the calculation of the Lagrange multipliers and for the minimum losses value are obtained. These equations are used to validate the results obtained using an OPF program. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Alternant codes over arbitrary finite commutative local rings with identity are constructed in terms of parity-check matrices. The derivation is based on the factorization of x s - 1 over the unit group of an appropriate extension of the finite ring. An efficient decoding procedure which makes use of the modified Berlekamp-Massey algorithm to correct errors and erasures is presented. Furthermore, we address the construction of BCH codes over Zm under Lee metric.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Z(4)-linearity is a construction technique of good binary codes. Motivated by this property, we address the problem of extending the Z(4)-linearity to Z(q)n-linearity. In this direction, we consider the n-dimensional Lee space of order q, that is, (Z(q)(n), d(L)), as one of the most interesting spaces for coding applications. We establish the symmetry group of Z(q)(n) for any n and q by determining its isometries. We also show that there is no cyclic subgroup of order q(n) in Gamma(Z(q)(n)) acting transitively in Z(q)(n). Therefore, there exists no Z(q)n-linear code with respect to the cyclic subgroup.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A construction technique of finite point constellations in n-dimensional spaces from ideals in rings of algebraic integers is described. An algorithm is presented to find constellations with minimum average energy from a given lattice. For comparison, a numerical table of lattice constellations and group codes is computed for spaces of dimension two, three, and four. © 2001.
Resumo:
We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.
Resumo:
This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes.
Resumo:
We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.
Resumo:
In this work, we determine the coset weight spectra of all binary cyclic codes of lengths up to 33, ternary cyclic and negacyclic codes of lengths up to 20 and of some binary linear codes of lengths up to 33 which are distance-optimal, by using some of the algebraic properties of the codes and a computer assisted search. Having these weight spectra the monotony of the function of the undetected error probability after t-error correction P(t)ue (C,p) could be checked with any precision for a linear time. We have used a programm written in Maple to check the monotony of P(t)ue (C,p) for the investigated codes for a finite set of points of p € [0, p/(q-1)] and in this way to determine which of them are not proper.
Resumo:
In this thesis we consider algebro-geometric aspects of the Classical Yang-Baxter Equation and the Generalised Classical Yang-Baxter Equation. In chapter one we present a method to construct solutions of the Generalised Classical Yang-Baxter Equation starting with certain sheaves of Lie algebras on algebraic curves. Furthermore we discuss a criterion to check unitarity of such solutions. In chapter two we consider the special class of solutions coming from sheaves of traceless endomorphisms of simple vector bundles on the nodal cubic curve. These solutions are quasi-trigonometric and we describe how they fit into the classification scheme of such solutions. Moreover, we describe a concrete formula for these solutions. In the third and final chapter we show that any unitary, rational solution of the Classical Yang-Baxter Equation can be obtained via the method of chapter one applied to a sheaf of Lie algebras on the cuspidal cubic curve.
Resumo:
The existence of genuinely non-geometric backgrounds, i.e. ones without geometric dual, is an important question in string theory. In this paper we examine this question from a sigma model perspective. First we construct a particular class of Courant algebroids as protobialgebroids with all types of geometric and non-geometric fluxes. For such structures we apply the mathematical result that any Courant algebroid gives rise to a 3D topological sigma model of the AKSZ type and we discuss the corresponding 2D field theories. It is found that these models are always geometric, even when both 2-form and 2-vector fields are neither vanishing nor inverse of one another. Taking a further step, we suggest an extended class of 3D sigma models, whose world volume is embedded in phase space, which allow for genuinely non-geometric backgrounds. Adopting the doubled formalism such models can be related to double field theory, albeit from a world sheet perspective.