994 resultados para Algebra teaching
Resumo:
Treating algebraic symbols as objects (eg. “‘a’ means ‘apple’”) is a means of introducing elementary simplification of algebra, but causes problems further on. This current school-based research included an examination of texts still in use in the mathematics department, and interviews with mathematics teachers, year 7 pupils and then year 10 pupils asking them how they would explain, “3a + 2a = 5a” to year 7 pupils. Results included the notion that the ‘algebra as object’ analogy can be found in textbooks in current usage, including those recently published. Teachers knew that they were not ‘supposed’ to use the analogy but not always clear why, nevertheless stating methods of teaching consistent with an‘algebra as object’ approach. Year 7 pupils did not explicitly refer to ‘algebra as object’, although some of their responses could be so interpreted. In the main, year 10 pupils used ‘algebra as object’ to explain simplification of algebra, with some complicated attempts to get round the limitations. Further research would look to establish whether the appearance of ‘algebra as object’ in pupils’ thinking between year 7 and 10 is consistent and, if so, where it arises. Implications also are for on-going teacher training with alternatives to introducing such simplification.
Resumo:
In this action research study of my classroom of 8th and 9th grade Algebra I students, I investigated if there are any benefits for the students in my class to learn how to read, translate, use, and understand the mathematical language found daily in their math lessons. I discovered that daily use and practice of the mathematical language in both written and verbal form, by not only me but by my students as well, improved their understanding of the textbook instructions, increased their vocabulary and also increased their understanding of their math lessons. I also found that my students remembered the mathematical material better with constant use of mathematical language and terms. As a result of this research, I plan to continue stressing the use of mathematical language and vocabulary in my classroom and will try to develop new ways to help students to read, understand, and remember mathematical language they find daily in their textbooks.
Resumo:
In this action research study of my classroom of 8th grade mathematics, I investigated the effect of reviewing basic fraction and decimal skills on student achievement and student readiness for freshman Algebra. I also investigated the effect on the quality of student work, with regards to legibility by having students grade each other’s work anonymously. I discovered that students need basic skill review with fractions and decimals, and by the end of the research their scores improved. However, their handwriting had not. At the end of the research, a majority of the students felt the review was important, and they were ready to take math next year in high school. As a result of this research, I plan to implement weekly fraction and decimal review assignments in all middle school grades: 6th, 7th, and 8th. In addition, fraction and decimals must be incorporated into daily assignments, where appropriate, in order to encourage students to retain these skills.
Resumo:
After teaching regular education secondary mathematics for seven years, I accepted a position in an alternative education high school. Over the next four years, the State of Michigan adopted new graduation requirements phasing in a mandate for all students to complete Geometry and Algebra 2 courses. Since many of my students were already struggling in Algebra 1, getting them through Geometry and Algebra 2 seemed like a daunting task. To better instruct my students, I wanted to know how other teachers in similar situations were addressing the new High School Content Expectations (HSCEs) in upper level mathematics. This study examines how thoroughly alternative education teachers in Michigan are addressing the HSCEs in their courses, what approaches they have found most effective, and what issues are preventing teachers and schools from successfully implementing the HSCEs. Twenty-six alternative high school educators completed an online survey that included a variety of questions regarding school characteristics, curriculum alignment, implementation approaches and issues. Follow-up phone interviews were conducted with four of these participants. The survey responses were used to categorize schools as successful, unsuccessful, and neutral schools in terms of meeting the HSCEs. Responses from schools in each category were compared to identify common approaches and issues among them and to identify significant differences between school groups. Data analysis showed that successful schools taught more of the HSCEs through a variety of instructional approaches, with an emphasis on varying the ways students learned the material. Individualized instruction was frequently mentioned by successful schools and was strikingly absent from unsuccessful school responses. The main obstacle to successful implementation of the HSCEs identified in the study was gaps in student knowledge. This caused pace of instruction to also be a significant issue. School representatives were fairly united against the belief that the Algebra 2 graduation requirement was appropriate for all alternative education students. Possible implications of these findings are discussed.
Resumo:
In this article we present a didactic experience developed by the GIE (Group of Educational Innovation) “Pensamiento Matemático” of the Polytechnics University of Madrid (UPM), in order to bring secondary students and university students closer to Mathematics. It deals with the development of a virtual board game called Mate-trivial. The mechanics of the game is to win points by going around the board which consists of four types of squares identified by colours: “Statistics and Probability”, “Calculus and Analysis”, “Algebra and Geometry” and “Arithmetic and Number Theory ”. When landing on a square, a question of its category is set out: a correct answer wins 200 points, if wrong it loses 100 points, and not answering causes no effect on the points, but all the same, two minutes out of the 20 minutes that each game lasts are lost. For the game to be over it is necessary, before those 20 minutes run out, to reach the central square and succeed in the final task: four chained questions, one of each type, which must be all answered correctly. It is possible to choose between two levels to play: Level 1, for pre-university students and Level 2 for university students. A prototype of the game is available at the website “Aula de Pensamiento Matemático” developed by the GIE: http://innovacioneducativa.upm.es/pensamientomatematico/. This activity lies within a set of didactic actions which the GIE is developing in the framework of the project “Collaborative Strategies between University and Secondary School Education for the teaching and learning of Mathematics: An Application to solve problems while playing”, a transversal project financed by the UPM.
Resumo:
Instructional book in algebra with exercises.
Resumo:
This paper considers the use of the computer algebra system Mathematica for teaching university-level mathematics subjects. Outlined are basic Mathematica concepts, connected with different mathematics areas: algebra, linear algebra, geometry, calculus and analysis, complex functions, numerical analysis and scientific computing, probability and statistics. The course “Information technologies in mathematics”, which involves the use of Mathematica, is also presented - discussed are the syllabus, aims, approaches and outcomes.
Resumo:
This dissertation derived hypotheses from the theories of Piaget, Bruner and Dienes regarding the effects of using Algebra Tiles and other manipulative materials to teach remedial algebra to community college students. The dependent variables measured were achievement and attitude towards mathematics. The Piagetian cognitive level of the students in the study was measured and used as a concomitant factor in the study.^ The population for the study was comprised of remedial algebra students at a large urban community college. The sample for the study consisted of 253 students enrolled in 10 sections of remedial algebra at three of the six campuses of the college. Pretests included administration of an achievement pre-measure, Aiken's Mathematics Attitude Inventory (MAI), and the Group Assessment of Logical Thinking (GALT). Posttest measures included a course final exam and a second administration of the MAI.^ The results of the GALT test revealed that 161 students (63.6%) were concrete operational, 65 (25.7%) were transitional, and 27 (10.7%) were formal operational. For the purpose of analyzing the data, the transitional and formal operational students were grouped together.^ Univariate factorial analyses of covariance ($\alpha$ =.05) were performed on the posttest of achievement (covariate = achievement pretest) and the MAI posttest (covariate = MAI pretest). The factors used in the analysis were method of teaching (manipulative vs. traditional) and cognitive level (concrete operational vs. transitional/formal operational).^ The analyses for achievement revealed a significant difference in favor of the manipulatives groups in the computations by campus. Significant differences were not noted in the analysis by individual instructors.^ The results for attitude towards mathematics showed a significant difference in favor of the manipulatives groups for the college-wide analysis and for one campus. The analysis by individual instructor was not significant. In addition, the college-wide analysis was significant in favor of the transitional/formal operational stage of cognitive development. However, support for this conclusion was not obtained in the analyses by campus or individual instructor. ^
Resumo:
The purpose of this study was to determine if an experimental context-based delivery format for mathematics would be more effective than a traditional model for increasing the performance in mathematics of at-risk students in a public high school of choice, as evidenced by significant gains in achievement on the standards-based Mathematics subtest of the FCAT and final academic grades in Algebra I. The guiding rationale for this approach is captured in the Secretary's Commission on Achieving Necessary Skills (SCANS) report of 1992 that resulted in school-to-work initiatives (United States Department of Labor). Also, the charge for educational reform has been codified at the state level as Educational Accountability Act of 1971 (Florida Statutes, 1995) and at the national level as embodied in the No Child Left Behind Act of 2001. A particular focus of educational reform is low performing, at-risk students. ^ This dissertation explored the effects of a context-based curricular reform designed to enhance the content of Algebra I content utilizing a research design consisting of two delivery models: a traditional content-based course; and, a thematically structured, content-based course. In this case, the thematic element was business education as there are many advocates in career education who assert that this format engages students who are often otherwise disinterested in mathematics in a relevant, SCANS skills setting. The subjects in each supplementary course were ninth grade students who were both low performers in eighth grade mathematics and who had not passed the eighth grade administration of the standards-based FCAT Mathematics subtest. The sample size was limited to two groups of 25 students and two teachers. The site for this study was a public charter school. Student-generated performance data were analyzed using descriptive statistics. ^ Results indicated that contrary to the beliefs held by many, contextual presentation of content did not cause significant gains in either academic performance or test performance for those in the experimental treatment group. Further, results indicated that there was no meaningful difference in performance between the two groups. ^