984 resultados para Air samples
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane atmospheric mixing and stable isotope ratios in air trapped in polar ice sheets helps in reconstructing the evolution of its sources and sinks in the past. This is important to improve predictions of atmospheric CH4 mixing ratios in the future under the influence of a changing climate. The aim of this study is to assess whether past atmospheric δ13C(CH4) variations can be reliably reconstructed from firn air measurements. Isotope reconstructions obtained with a state of the art firn model from different individual sites show unexpectedly large discrepancies and are mutually inconsistent. We show that small changes in the diffusivity profiles at individual sites lead to strong differences in the firn fractionation, which can explain a large part of these discrepancies. Using slightly modified diffusivities for some sites, and neglecting samples for which the firn fractionation signals are strongest, a combined multi-site inversion can be performed, which returns an isotope reconstruction that is consistent with firn data. However, the isotope trends are lower than what has been concluded from Southern Hemisphere (SH) archived air samples and high-accumulation ice core data. We conclude that with the current datasets and understanding of firn air transport, a high precision reconstruction of δ13C of CH4 from firn air samples is not possible, because reconstructed atmospheric trends over the last 50 yr of 0.3–1.5 ‰ are of the same magnitude as inherent uncertainties in the method, which are the firn fractionation correction (up to ~2 ‰ at individual sites), the Kr isobaric interference (up to ~0.8 ‰, system dependent), inter-laboratory calibration offsets (~0.2 ‰) and uncertainties in past CH4 levels (~0.5 ‰).
Resumo:
The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (ϵapp) for mid- and high-latitude stratospheric samples are respectively −2.4 (0.5) and −2.3 (0.4) ‰ for CFC-11, −12.2 (1.6) and −6.8 (0.8) ‰ for CFC-12 and −3.5 (1.5) and −3.3 (1.2) ‰ for CFC-113, where the number in parentheses is the numerical value of the standard uncertainty expressed in per mil. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere–troposphere exchange. We compare these projections to the long-term δ (37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978–2010) and tropospheric firn air samples from Greenland (North Greenland Eemian Ice Drilling (NEEM) site) and Antarctica (Fletcher Promontory site). From 1970 to the present day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties, a constant average emission isotope delta (δ) is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope δ has been affected by changes in CFC manufacturing processes or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 mL), using a single-detector gas chromatography–mass spectrometry (GC–MS) system.
Resumo:
Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 - July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory reaction, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.
Resumo:
Semipermeable membrane devices (SPMDs) have been used as passive air samplers of semivolatile organic compounds in a range of studies. However, due to a lack of calibration data for polyaromatic hydrocarbons (PAHs), SPMD data have not been used to estimate air concentrations of target PAHs. In this study, SPMDs were deployed for 32 days at two sites in a major metropolitan area in Australia. High-volume active sampling systems (HiVol) were co-deployed at both sites. Using the HiVol air concentration data from one site, SPMD sampling rates were measured for 12 US EPA Priority Pollutant PAHs and then these values were used to determine air concentrations at the second site from SPMD concentrations. Air concentrations were also measured at the second site with co-deployed HiVols to validate the SPMD results. PAHs mostly associated with the vapour phase (Fluorene to Pyrene) dominated both the HiVol and passive air samples. Reproducibility between replicate passive samplers was satisfactory (CV < 20%) for the majority of compounds. Sampling rates ranged between 0.6 and 6.1 m(3) d(-1). SPMD-based air concentrations were calculated at the second site for each compound using these sampling rates and the differences between SPMD-derived air concentrations and those measured using a HiVol were, on average, within a factor of 1.5. The dominant processes for the uptake of PAHs by SPMDs were also assessed. Using the SPMD method described herein, estimates of particulate sorbed airborne PAHs with five rings or greater were within 1.8-fold of HiVol measured values. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A descriptive study was developed to monitor air fungal contamination in ten food units from hospitals. Fifty air samples of 250 litres were collected through impaction method. Samples were collected in food storage facilities, kitchen, food plating, canteen and also, outside premises, since this is the place regarded as reference. Simultaneously, environmental parameters were also monitored, including temperature and relative humidity through the equipment Babouc, LSI Sistems and according to the International Standard ISO 7726.
Resumo:
Some polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in air and have been implicated as carcinogenic materials. Therefore, literature is replete with studies that are focused on their occurrence and profiles in indoor and outdoor air samples. However, because the relative potency of individual PAHs vary widely, health risks associated with the presence of PAHs in a particular environment cannot be extrapolated directly from the concentrations of individual PAHs in that environment. In addition, database on the potency of PAH mixtures is currently limited. In this paper, we have utilized multi-criteria decision making methods (MCDMs) to simultaneously correlate PAH-related health risk in some microenvironments to the concentration levels, ethoxyresorufin-O-deethylase (EROD) activity induction equivalency factors and toxic equivalency factors (TEFs) of PAHs found in those microenvironments. The results showed that the relative risk associated with PAHs in different air samples depends on the index used. Nevertheless, this approach offers a promising tool that could help identify microenvironments of concern and assist the prioritisation of control strategies.
Resumo:
Background: Pseudomonas aeruginosa is the most common bacterial pathogen in cystic fibrosis (CF) patients. Current infection control guidelines aim to prevent transmission via contact and respiratory droplet routes and do not consider the possibility of airborne transmission. We hypothesized that with coughing, CF subjects produce viable, respirable bacterial aerosols. Methods: Cross-sectional study of 15 children and 13 adults with CF, 26 chronically infected with P. aeruginosa. A cough aerosol sampling system enabled fractioning of respiratory particles of different size, and culture of viable Gram negative non-fermentative bacteria. We collected cough aerosols during 5 minutes voluntary coughing and during a sputum induction procedure when tolerated. Standardized quantitative culture and genotyping techniques were used. Results: P. aeruginosa was isolated in cough aerosols of 25 (89%) subjects of whom 22 produced sputum samples. P. aeruginosa from sputum and paired cough aerosols were indistinguishable by molecular typing. In 4 cases the same genotype was isolated from ambient room air. Approximately 70% of viable aerosols collected during voluntary coughing were of particles ≤ 3.3 microns aerodynamic diameter. P. aeruginosa, Burkholderia cenocepacia Stenotrophomonas maltophilia and Achromobacter xylosoxidans were cultivated from respiratory particles in this size range. Positive room air samples were associated with high total counts in cough aerosols (P=0.003). The magnitude of cough aerosols were associated with higher FEV1 (r=0.45, P=0.02) and higher quantitative sputum culture results (r=0.58, P=0.008). Conclusion: During coughing, CF patients produce viable aerosols of P. aeruginosa and other Gram negative bacteria of respirable size range, suggesting the potential for airborne transmission.
Resumo:
Aims: Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies. Method: A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples. Conclusions: The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not. Significance and Impact of the Study: The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.
Resumo:
Passive air samplers (PAS) consisting of polyurethane foam (PUF) disks were deployed at 6 outdoor air monitoring stations in different land use categories (commercial, industrial, residential and semi-rural) to assess the spatial distribution of polybrominated diphenyl ethers (PBDEs) in the Brisbane airshed. Air monitoring sites covered an area of 1143 km2 and PAS were allowed to accumulate PBDEs in the city's airshed over three consecutive seasons commencing in the winter of 2008. The average sum of five (∑5) PBDEs (BDEs 28, 47, 99, 100 and 209) levels were highest at the commercial and industrial sites (12.7 ± 5.2 ng PUF−1), which were relatively close to the city center and were a factor of 8 times higher than residential and semi-rural sites located in outer Brisbane. To estimate the magnitude of the urban ‘plume’ an empirical exponential decay model was used to fit PAS data vs. distance from the CBD, with the best correlation observed when the particulate bound BDE-209 was not included (∑5-209) (r2 = 0.99), rather than ∑5 (r2 = 0.84). At 95% confidence intervals the model predicts that regardless of site characterization, ∑5-209 concentrations in a PAS sample taken between 4–10 km from the city centre would be half that from a sample taken from the city centre and reach a baseline or plateau (0.6 to 1.3 ng PUF−1), approximately 30 km from the CBD. The observed exponential decay in ∑5-209 levels over distance corresponded with Brisbane's decreasing population density (persons/km2) from the city center. The residual error associated with the model increased significantly when including BDE-209 levels, primarily due to the highest level (11.4 ± 1.8 ng PUF−1) being consistently detected at the industrial site, indicating a potential primary source at this site. Active air samples collected alongside the PAS at the industrial air monitoring site (B) indicated BDE-209 dominated congener composition and was entirely associated with the particulate phase. This study demonstrates that PAS are effective tools for monitoring citywide regional differences however, interpretation of spatial trends for POPs which are predominantly associated with the particulate phase such as BDE-209, may be restricted to identifying ‘hotspots’ rather than broad spatial trends.
Resumo:
Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run and their airborne emissions sampled with closed-face cassettes. Dust samples were also 35 collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus and total Clostridium cluster 1 were quantified with specific qPCR protocols and emission rates were calculated. Clostridium botulinum, as well as antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gel electrophoresis (DGGE), image analysis and band sequencing. We demonstrated that emission of bacteria and moulds (Pen/Asp) can reach values as high as 1E05/min and that those emissions are not related to each other. The bag dust bacterial and mould content was also consistently across the vacuums we assessed, reaching up to 1E07 bacteria or moulds equivalent/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum were detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of moulds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols.
Resumo:
Increased levels of polybrominated diphenyl ethers (PBDEs) can occur particularly in dust and soil surrounding facilities that recycle products containing PBDEs. This may be the source of increased exposure for nearby workers and residents. To investigate, we measured PBDE levels in soil, office dust and blood of workers at the closest workplace (i.e. within 100m) to a large automotive shredding and metal recycling facility in Brisbane, Australia. The workplace investigated in this study was independent of the automotive shredding facility and was one of approximately 50 businesses of varying types within a relatively large commercial/industrial area surrounding the recycling facility. Concentrations of PBDEs in soils were at least an order of magnitude greater than background levels in the area. Congener profiles were dominated by larger molecular weight congeners; in particular BDE-209. This reflected the profile in outdoor air samples previously collected at this site. Biomonitoring data from blood serum indicated no differential exposure for workers near the recycling facility compared to a reference group of office workers, also in Brisbane. Unlike air, indoor dust and soil sample profiles, serum samples from both worker groups were dominated by congeners BDE-47, BDE-153, BDE-99, BDE-100 and BDE-183 and was similar to the profile previously reported in the general Australian population. Estimated exposures for workers near the industrial point source suggested indoor workers had significantly higher exposure than outdoor workers due to their exposure to indoor dust rather than soil. However, no relationship was observed between blood PBDE levels and different roles and activity patterns of workers on-site. These comparisons of PBDE levels in serum provide additional insight into the inter-individual variability within Australia. Results also indicate congener patterns in the workplace environment did not match blood profiles of workers. This was attributed to the relatively high background exposures for the general Australian population via dietary intake and the home environment.
Resumo:
Introduction: Exposure to bioaerosols in indoor environments has been linked to various adverse health effects, such as airway disorders and upper respiratory tract symptoms. The aim of this study was to assess exposure to bioaerosols in the school environment in Brisbane, Australia. Methods: Culturable fungi and endotoxin measurements were conducted in six schools between October 2010 and May 2011. Culturable fungi (2 indoor air and 1-2 outdoor air samples per school) were assessed using a Biotest RCS High Flow Air Sampler, with a flow rate of either 50L/min or 20L/min. A rose pengar agar was used for recovery, which was incubated prior to counting and partial identification. Endotoxins were sampled (8h, 2L/min) using SKC glass fibre filters (4 indoor air samples per school) and analysed using an endpoint chromogenic LAL assay. Results: The arithmetic mean for fungi concentration in indoor and outdoor air was 710 cfu/m3(125- 1900 cfu/m3) and 524 cfu/m3 (140-1250 cfu/m3), respectively. The most frequently isolated fungal genus from the outdoor air was Cladosporium (over 40 %), followed by isolated Penicillium (21%) and Aspergillus (12%). The percent of Penicillium, Cladosporium and Aspergillus in indoor air samples was 32%, 32% and 8%, respectively. The aritmetic mean of endotoxin concentration was 0.59 EU/m3 (0-2,2 EU/m3). Discussion: The results of the current study are in agreement with previously reported studies, in that airborne fungi and endotoxin concentrations varied extensively, and were mostly dependent on climatic conditions. In addition, the indoor air mycoflora largely reflected the fungal flora present in the outdoor air, with Cladosporium being the most common in both outdoor and indoor (with Penicillium) air. In indoor air, unusually high endotoxin levels, over 1 EU/m3, were detected at 2 schools. Although these schools were not affected by the recent Brisbane floods, persistent rain prior to and during the study perios could explain the results.
Resumo:
Sampling devices differing greatly in shape, size and operating condition have been used to collect air samples to determine rates of emission of volatile substances, including odour. However, physical chemistry principles, in particular the partitioning of volatile substances between two phases as explained by Henrys Law and the relationship between wind velocity and emission rate, suggests that different devices cannot be expected to provide equivalent emission rate estimates. Thus several problems are associated with the use of static and dynamic emission chambers, but the more turbulent devices such as wind tunnels do not appear to be subject to these problems. In general, the ability to relate emission rate estimates obtained from wind tunnel measurements to those derived from device-independent techniques supports the use of wind tunnels to determine emission rates that can be used as input data for dispersion models.
Resumo:
Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis – Absolute Principal Component Scores (PCA- APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas.