964 resultados para Aerospace navigation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proportional Navigation (PN) and its variants are widely used guidance philosophies. However, in the presence of target maneuver, PN guidance law is effective only for a restrictive set of initial geometries. To account for target maneuvers, the concept of Augmented Proportional Navigation (APN) guidance law was introduced and analyzed in a linearized interceptor-target engagement framework presented in literature. However, there is no work in the literature, that addresses the capturability performance of the APN guidance law in a nonlinear engagement framework. This paper presents such an analysis and obtains the conditions for capturability. It also shows that a shorter time of interception is obtained when APN is formulated in the nonlinear framework as proposed in this paper. Simulation results are given to support the theoretical findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aeronautical charts underlie the representation of aeronautic geographic information that supports pilots in flight. Nevertheless, the charts become complex due to the high density of data and the different kinds of charts that support each phase of flight. These features make difficult using them on board. After conducting a study, with civil Spaniard pilots, that aims to understand and to evaluate their needs related to Geographic Information, it is proposed a solution to implement a platform based on geographic information standards (OGC, ISO) and supported by a distributed Web architecture. This platform facilitates the use, retrieval, updating of information and its exchange among different institutions through private and public users. As a first element to ensure interoperability of information, we suggest an aeronautical metadata profile that sets guidelines and elements for its description. The metadata profile meets the standards set by ICAO, Eurocontrol and ISO. The platform offers three levels of access to data through different types of devices and user profiles. Thus, aeronautical institutions could edit data while pilot is on board accessing digital aeronautical charts through a laptop or Table PC. This paper suggests an alternative and reliable way for distributing aeronautical geoinformation, focusing on specific functions or displaying and querying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose an efficient authentication and integrity scheme to support DGPS corrections using the RTCM protocol, such that the identified vulnerabilities in DGPS are mitigated. The proposed scheme is based on the TESLA broadcast protocol with modifications that make it suitable for the bandwidth and processor constrained environment of marine DGPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.