47 resultados para Aerden, Dries
Resumo:
The Knowledge of the physical properties of agricultural products has great importance for the construction and operation of equipment for drying and storage, to achieve increased efficiency in post-harvest operations. The aim was to determine and analyze the physical properties of crambe fruits during drying at different temperatures. Crambe fruits with an initial moisture content of 0.36 (decimal d.b.) which was reduced by drying at 37.0; 58.8 and 83.5 ºC and relative humidity of 29.4; 11.2 and 3.2%, respectively, to 0.09 ± 1 (decimal d.b.). At different levels of moisture contents (0.36; 0.31; 0.26; 0.21; 0.17; 0.13 and 0.09 decimal d.b.), was evaluated the intergranular porosity, the bulk density, the true density as well as the volumetric shrinkage and the fruit mass. The study was installed by the factorial 3 x 7, and three drying temperatures and seven moisture contents in a randomized design. Data were analyzed using regression. The bulk density and the true density decreases along the drying process; the volumetric shrinkage and the mass increased with lower moisture content and the intergranular porosity decreased sharply with the increasing drying temperature.
Resumo:
Esitys Dries Moreelsin tapaamisessa (Ghent University Library) 15.–16.10. 2014, Vallila Helsinki. /Performance at visit of Dries Moreels Ghent University Library oct 15th- oct 16th 2014, Vallila Helsinki.
Resumo:
Background: The Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) have a impact on the respiratory system and the recommendations for mechanical ventilation of patients with IAH/ACS remain unclear. Our study characterize the influence of elevated intra-abdominal pressure (IAP) and positive end-expiratory pressure (PEEP) on airway plateau pressure (PPLAT) and bladder pressure (PBLAD). Methods: Nine (n=9) deeply anesthetized swine were mechanically ventilated via tracheostomy: volume-controlled mode at tidal volume = 10 ml/kg, frequency=15, Inspiratory:Expiratory ratio=1:2 and PEEP of 1 and 10 cmH2O (PEEP1 and PEEP10, respectively). A tracheostomy tube was place in the peritoneal cavity and different levels of IAP were applied utilizing a CPAP system. Measurements were performed during both PEEP1 and PEEP10. Results: PBLAD increased as experimental IAP rose. Minimal underestimation of IAP by PBLAD was observed. Applying PEEP10 did not significantly affect the correlation between experimental IAP and PBLAD. PBLAD (in cmH2O) was reflected by changes in PPLAT regardless of the PEEP.
Resumo:
As a soil dries, the earthworms in that soil dehydrate and become less active. Moisture stress may weaken an earthworm, lowering the radial pressure that the animal can produce. This possibility was investigated for the earthworm Aporrectodea caliginosa (Savigny). Pressures were compared for saturated earthworms (worms taken from saturated soil) and stressed earthworms (worms that had been partially dehydrated by leaving them in dry soil). A load cell was used to record the forces that earthworms produced as they moved through artificial burrows (holes that had been drilled through blocks of aluminium or Perspex). The radial pressure was calculated using the forces exerted and the dimensions of the artificial burrows. There was a negative correlation between burrow diameter and radial pressure, although radial pressure was independent of the length of the block through which the earthworms had burrowed. The highest radial pressures were produced by the anterior segments of the animal. Partial dehydration caused the earthworms to become quiescent, but did not decrease the radial pressure that the earthworms produced. It is suggested that coelomic fluid is retained in the anterior segments while the rest of the animal dehydrates. Dehydrated earthworms became lethargic, and we suggest that lethargy is due to the loss of coelomic fluid from the posterior segments. Coelomic fluid is known to be lost through dorsal pores. In burrowing species of earthworm such as Aporrectodea caliginosa, these pores are only present on the posterior segments.
Resumo:
The “natural laboratory” of mountainous Dominica (15°N) in the trade wind belt is used to study the physics of tropical orographic precipitation in its purest form, unforced by weather disturbances or by the diurnal cycle of solar heating. A cross-island line of rain gauges and 5-min radar scans from Guadeloupe reveal a large annual precipitation at high elevation (7 m yr^{−1}) and a large orographic enhancement factor (2 to 8) caused primarily by repetitive convective triggering over the windward slope. The triggering is caused by terrain-forced lifting of the conditionally unstable trade wind cloud layer. Ambient humidity fluctuations associated with open-ocean convection may play a key role. The convection transports moisture upward and causes frequent brief showers on the hilltops. The drying ratio of the full air column from precipitation is less than 1% whereas the surface air dries by about 17% from the east coast to the mountain top. On the lee side, a plunging trade wind inversion and reduced instability destroys convective clouds and creates an oceanic rain shadow.
Resumo:
Coupled photosynthesis–stomatal conductance (A–gs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm) and on the biochemical capacity. Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled A–gs models to accurately capture the observed functional relationships A vs. gs and A/gsvs. gs in response to drought. Accounting for water stress in coupled A–gs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress may be well represented in coupled A–gs models by imposing the highest limitation strength to gm, then to gs and finally to the biochemical capacity.
Resumo:
The present paper presents a simple theory for the transformation of non-precipitating, shallow convection into precipitating, deep convective clouds. In order to make the pertinent point a much idealized system is considered, consisting only of shallow and deep convection without large–scale forcing. The transformation is described by an explicit coupling between these two types of convection. Shallow convection moistens and cools the atmosphere, whereas deep convection dries and warms, leading to destabilization and stabilization respectively. Consequently, in their own stand–alone modes, shallow convection perpetually grows, whereas deep convection simply damps: the former never reaches equilibrium, and the latter is never spontaneously generated. Coupling the modes together is the only way to reconcile these undesirable separate tendencies so that the convective system as a whole can remain in a stable periodic state under this idealized setting. Such coupling is a key missing element in current global atmospheric models. The energy–cycle description as originally formulated by Arakawa and Schubert, and presented herein is suitable for direct implementation into models using a mass–flux parameterization, and would alleviate the current problems with the representation of these two types of convection in numerical models. The present theory also provides a pertinent framework for analyzing large–eddy simulations and cloud–resolving modelling.
Resumo:
The Amazon Basin is crucial to global circulatory and carbon patterns due to the large areal extent and large flux magnitude. Biogeophysical models have had difficulty reproducing the annual cycle of net ecosystem exchange (NEE) of carbon in some regions of the Amazon, generally simulating uptake during the wet season and efflux during seasonal drought. In reality, the opposite occurs. Observational and modeling studies have identified several mechanisms that explain the observed annual cycle, including: (1) deep soil columns that can store large water amount, (2) the ability of deep roots to access moisture at depth when near-surface soil dries during annual drought, (3) movement of water in the soil via hydraulic redistribution, allowing for more efficient uptake of water during the wet season, and moistening of near-surface soil during the annual drought, and (4) photosynthetic response to elevated light levels as cloudiness decreases during the dry season. We incorporate these mechanisms into the third version of the Simple Biosphere model (SiB3) both singly and collectively, and confront the results with observations. For the forest to maintain function through seasonal drought, there must be sufficient water storage in the soil to sustain transpiration through the dry season in addition to the ability of the roots to access the stored water. We find that individually, none of these mechanisms by themselves produces a simulation of the annual cycle of NEE that matches the observed. When these mechanisms are combined into the model, NEE follows the general trend of the observations, showing efflux during the wet season and uptake during seasonal drought.
Resumo:
Visando a aumentar o aproveitamento do material propagativo, ampliar o período de oferta das mudas de marmeleiro e dinamizar o uso da mão-de-obra no viveiro, faz-se necessário o armazenamento dos ramos porta-borbulhas. Sendo assim, o presente trabalho teve por objetivos estudar a viabilidade da manutenção dos ramos porta-borbulhas de diferentes cultivares de marmeleiro, por meio do armazenamento a frio, e diagnosticar o método de enxertia para promover melhor desenvolvimento do enxerto. Ramos dos marmeleiros 'Japonês' (Chaenomeles sinensis), 'Smyrna', 'Portugal', 'Mendoza Inta-37' e 'Provence' (Cydonia oblonga) foram coletados em julho de 2008. Uma parte dos ramos foi utilizada para a realização da enxertia (métodos de borbulhia e garfagem) em mudas de seis meses de idade do porta-enxerto 'Japonês', e a outra parte foi armazenada sob baixa temperatura (estacas envoltas em papel umedecido, embrulhadas em sacos de polietileno colocadas em câmara fria a 4°C), por 30 e 60 dias. Passados 60 dias, foi mensurada a porcentagem de brotação dos enxertos e, ao final de 120 dias da realização das enxertias, foram mensurados o comprimento, o diâmetro e a massa seca média dos enxertos. Concluiu-se que, apesar de as cultivares apresentarem diferença, recomenda-se que os ramos sejam armazenados por até 30 dias, sendo utilizada a enxertia pelo método de garfagem.
Resumo:
Nowadays, Brazil has both the greatest goat herd and the greatest goat milk production of South America. The state of Rio Grande do Norte, located in northeast of Brazil, has an average year production of three thousand cubic meters of goat milk in natura. Part of this milk production is homemade and it comes from small farms, which unite in rural cooperatives created to encourage the production and implementation of industrial processes for preservation and processing of milk. Results presented by literature and obtained from preliminary essays in this thesis show that non conventional dryer of spouted bed with inert particles is able to produce powder milk from in natura milk (cattle or goat), with the same quality of spray dryer, however, operating at low cost. The method of drying in spouted bed consists of injecting milk emulsion on the bed of inert particles gushed by hot air. This emulsion covers the particles with a thin film, which dries and is reduced to powder during the circulation of inerts inside the bed. The powder is dragged by exhaustion air and separated in the cyclone. The friction among particles resulted from the particles circulation, encourages high taxes of shear in the thin film of emulsion, breaking the cohesive forces and making this process possible. Studying the drying process and the powder goat milk production in one unit of spouted bed with inert particles, seeing the development of a low cost technological route for powder milk production is the aim of this thesis. The powder milk produced by this route must attend the local demand of food industries which need an intermediate product to be used as a food ingredient (ice-cream, milk candy). In order to reach this aim, this thesis approaches the aspects related to physical, thermodynamics and physic-chemicals characteristics of goat milk, whose complete data are still inexistent in the literature. The properties of materials are of great importance to the project of any process which involves the operations of transportation of movement, heat and mass quantity, such as the dryers which operate in fluid dynamically active regime, like the spouted bed. It was obtained new data related to the goat milk properties in function of concentration of solids and temperature. It is also important to mention the study developed about the kinetic of solids retention in the bed of inert particles during the drying of goat milk. It was found more adequate processes conditions to the proposed technological route to be implemented in small and micro-industries, with simplifications in the system of milk injection as well as in the form of operation of the dryer. Important data were obtained for a posterior stage of this research which involves the v modeling, simulation, control and optimization of the process. The results obtained in this thesis, in relation to process performance as well as to the quality of produced powder milk validate the proposal of using the spouted bed dryer in the production of powder goat milk
Resumo:
The buttonweed (Spermacoce latifolia) is becoming a plant among the most current infesting eucalypts plantation in State of São Paulo due to the continual use of same herbicides and control methods. Owing this, this work aimed to evaluate the effects of periods of company and control of S. Iatifolia on the initial growth of Eucalyptus grandis, planted in winter and summer. Only one seedling of Eucalyptus was planted in amianthus cement box and submitted for crescent periods of company and control of S. Iatifolia (0, 20, 60 and 80 days in competition or not). The densities of plants of S. Iatifolia were 4 and 16 plants per m 2 (under winner and summer conditions). The experimental period was 100 days after the planting (DAP). The experimental design for both experiments was the completely randomized blocks (CRB) with ten treatments and four replicates. The results of plant high, stem diameter, dries weights and leaf area showed that the before interference period (BIP), whole period of prevention for interference (WPPI) and critical period of prevention for interference (CPPI) were 40, 60, and 60 DAR, respectively, under winner conditions. Under summer conditions, the WPPI and CPPI were 20, 80 and 20 to 80 DAR.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)