955 resultados para AVERAGE POWER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers. (c) 2006 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new dual-gas multi-jet HHG source which can be perfectly controlled via phasematching of the long and short trajectory contributions and is applicable for high average power driver laser systems. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3rd generation partnership project (3GPP) long term evolution (LTE) standard uses single carrier frequency division multiple access (SCFDMA) scheme for the uplink transmissions and orthogonal frequency division multiplexing access (OFDMA) in downlink. SCFDMA uses DFT spreading prior to OFDMA modulation to map the signal from each user to a subset of the available subcarriers i.e., single carrier modulation. The efficiency of a power amplifier is determined by the peak to average power ratio (PAPR) of the modulated signal. In this paper, we analyze the PAPR in 3GPP LTE systems using root raised cosine based filter. Simulation results show that the SCFDMA subcarrier mapping has a significantly lower PAPR compared to OFDMA. Also comparing the three forms of SCFDMA subcarrier mapping, results show that interleave FDMA (IFDMA) subcarrier mapping with proposed root raised cosine filter reduced PAPR significantly than localized FDMA (LFDMA) and distributed (DFDMA) mapping. This improves its radio frequency (RF) power amplifier efficiency and also the mean power output from a battery driven mobile terminal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peak-to-average power ratio (PAPR) and optical beat interference (OBI) effects are examined thoroughly in orthogonal frequency-division multiplexing access (OFDMA)-passive optical networks (PONs) at a signal bit rate up to ∼ 20 Gb/s per channel using cost-effective intensity-modulation and direct-detection (IM/DD). Single-channel OOFDM and upstream multichannel OFDM-PONs are investigated for up to six users. A number of techniques for mitigating the PAPR and OBI effects are presented and evaluated including adaptive-loading algorithms such as bit/power-loading, clipping for PAPR reduction, and thermal detuning (TD) for the OBI suppression. It is shown that the bit-loading algorithm is a very efficient PAPR reduction technique by reducing it at about 1.2 dB over 100 Km of transmission. It is also revealed that the optimum method for suppressing the OBI is the TD + bit-loading. For a targeted BER of 1 × 10-3, the minimum allowed channel spacing is 11 GHz when employing six users. © 2013 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthogonal Frequency-Division Multiplexing (OFDM) has been proved to be a promising technology that enables the transmission of higher data rate. Multicarrier Code-Division Multiple Access (MC-CDMA) is a transmission technique which combines the advantages of both OFDM and Code-Division Multiplexing Access (CDMA), so as to allow high transmission rates over severe time-dispersive multi-path channels without the need of a complex receiver implementation. Also MC-CDMA exploits frequency diversity via the different subcarriers, and therefore allows the high code rates systems to achieve good Bit Error Rate (BER) performances. Furthermore, the spreading in the frequency domain makes the time synchronization requirement much lower than traditional direct sequence CDMA schemes. There are still some problems when we use MC-CDMA. One is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal. High PAPR leads to nonlinear distortion of the amplifier and results in inter-carrier self-interference plus out-of-band radiation. On the other hand, suppressing the Multiple Access Interference (MAI) is another crucial problem in the MC-CDMA system. Imperfect cross-correlation characteristics of the spreading codes and the multipath fading destroy the orthogonality among the users, and then cause MAI, which produces serious BER degradation in the system. Moreover, in uplink system the received signals at a base station are always asynchronous. This also destroys the orthogonality among the users, and hence, generates MAI which degrades the system performance. Besides those two problems, the interference should always be considered seriously for any communication system. In this dissertation, we design a novel MC-CDMA system, which has low PAPR and mitigated MAI. The new Semi-blind channel estimation and multi-user data detection based on Parallel Interference Cancellation (PIC) have been applied in the system. The Low Density Parity Codes (LDPC) has also been introduced into the system to improve the performance. Different interference models are analyzed in multi-carrier communication systems and then the effective interference suppression for MC-CDMA systems is employed in this dissertation. The experimental results indicate that our system not only significantly reduces the PAPR and MAI but also effectively suppresses the outside interference with low complexity. Finally, we present a practical cognitive application of the proposed system over the software defined radio platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthogonal Frequency-Division Multiplexing (OFDM) has been proved to be a promising technology that enables the transmission of higher data rate. Multicarrier Code-Division Multiple Access (MC-CDMA) is a transmission technique which combines the advantages of both OFDM and Code-Division Multiplexing Access (CDMA), so as to allow high transmission rates over severe time-dispersive multi-path channels without the need of a complex receiver implementation. Also MC-CDMA exploits frequency diversity via the different subcarriers, and therefore allows the high code rates systems to achieve good Bit Error Rate (BER) performances. Furthermore, the spreading in the frequency domain makes the time synchronization requirement much lower than traditional direct sequence CDMA schemes. There are still some problems when we use MC-CDMA. One is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal. High PAPR leads to nonlinear distortion of the amplifier and results in inter-carrier self-interference plus out-of-band radiation. On the other hand, suppressing the Multiple Access Interference (MAI) is another crucial problem in the MC-CDMA system. Imperfect cross-correlation characteristics of the spreading codes and the multipath fading destroy the orthogonality among the users, and then cause MAI, which produces serious BER degradation in the system. Moreover, in uplink system the received signals at a base station are always asynchronous. This also destroys the orthogonality among the users, and hence, generates MAI which degrades the system performance. Besides those two problems, the interference should always be considered seriously for any communication system. In this dissertation, we design a novel MC-CDMA system, which has low PAPR and mitigated MAI. The new Semi-blind channel estimation and multi-user data detection based on Parallel Interference Cancellation (PIC) have been applied in the system. The Low Density Parity Codes (LDPC) has also been introduced into the system to improve the performance. Different interference models are analyzed in multi-carrier communication systems and then the effective interference suppression for MC-CDMA systems is employed in this dissertation. The experimental results indicate that our system not only significantly reduces the PAPR and MAI but also effectively suppresses the outside interference with low complexity. Finally, we present a practical cognitive application of the proposed system over the software defined radio platform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quasi-continuous-wave operation of GaAs/AlGaAs quantum-cascade lasers with high average optical power is demonstrated. Double X-ray diffraction has been used to investigate the quality of the epitaxial material. The compositional gradients and the interface quality are controlled effectively. The corrected average power of per facet about 17 mW and temperature tuning coefficient of the gain peak about 0.91 nm/K from 83 K to 140 K is achieved in pulse operation. Best value of threshold current density is less than 3.0 kA/cm(2) at 83 K. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Scan circuit generally causes excessive switching activity compared to normal circuit operation. The higher switching activity in turn causes higher peak power supply current which results into supply, voltage droop and eventually yield loss. This paper proposes an efficient methodology for test vector re-ordering to achieve minimum peak power supported by the given test vector set. The proposed methodology also minimizes average power under the minimum peak power constraint. A methodology to further reduce the peak power below the minimum supported peak power, by inclusion of minimum additional vectors is also discussed. The paper defines the lower bound on peak power for a given test set. The results on several benchmarks shows that it can reduce peak power by up to 27%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (1/eta)(t), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterisation of the optimal operating point.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large external memory bandwidth requirement leads to increased system power dissipation and cost in video coding application. Majority of the external memory traffic in video encoder is due to reference data accesses. We describe a lossy reference frame compression technique that can be used in video coding with minimal impact on quality while significantly reducing power and bandwidth requirement. The low cost transformless compression technique uses lossy reference for motion estimation to reduce memory traffic, and lossless reference for motion compensation (MC) to avoid drift. Thus, it is compatible with all existing video standards. We calculate the quantization error bound and show that by storing quantization error separately, bandwidth overhead due to MC can be reduced significantly. The technique meets key requirements specific to the video encode application. 24-39% reduction in peak bandwidth and 23-31% reduction in total average power consumption are observed for IBBP sequences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The problem of determining optimal power spectral density models for earthquake excitation which satisfy constraints on total average power, zero crossing rate and which produce the highest response variance in a given linear system is considered. The solution to this problem is obtained using linear programming methods. The resulting solutions are shown to display a highly deterministic structure and, therefore, fail to capture the stochastic nature of the input. A modification to the definition of critical excitation is proposed which takes into account the entropy rate as a measure of uncertainty in the earthquake loads. The resulting problem is solved using calculus of variations and also within linear programming framework. Illustrative examples on specifying seismic inputs for a nuclear power plant and a tall earth dam are considered and the resulting solutions are shown to be realistic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Resonant microwave power absorption is examined for slabs exposed to TEM waves from both faces and for a slab placed on a reflecting support. Using the electric field distribution in the slab, the average power is obtained by integrating the spatially distributed power across the sample length. Due to constructive interference of the standing waves within the sample, the average power rises to a local maximum during a resonance. Irrespective of the material, resonances occur at integral values of L/lambda(s) when the slab is exposed to radiation from both faces and at L/lambda(s) = 0.5n-0.25 when placed on a reflecting support.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider a joint power control and transmission scheduling problem in wireless networks with average power constraints. While the capacity region of a wireless network is convex, a characterization of this region is a hard problem. We formulate a network utility optimization problem involving time-sharing across different "transmission modes," where each mode corresponds to the set of power levels used in the network. The structure of the optimal solution is a time-sharing across a small set of such modes. We use this structure to develop an efficient heuristic approach to finding a suboptimal solution through column generation iterations. This heuristic approach converges quite fast in simulations, and provides a tool for wireless network planning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Thetaopt bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form dopt(Pmacrt) x Thetaopt with dopt scaling as Pmacrt 1 /eta, where Pmacrt is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then pro- - vide a simple characterisation of the optimal operating point.