992 resultados para ALUMINOPHOSPHATE MOLECULAR-SIEVE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

HSAPO-34 molecular sieve was employed in chloromethane conversion and showed high performance in activity and selectivity in production of light olefins. Our detailed IR investigation allowed the identification of the active sites and the adsorbed species and demonstrated that the conversion started from 350 degrees C with alkoxy group as the intermediate. The fixed-bed catalytic testing evidenced that in the range of 350-500 degrees C, 70-80% of chloromethane was transferred to ethylene, propylene and butenes. Increasing reaction temperature favors the conversion and enhances the yield of lighter olefins. A very important reversible phenomenon, the breaking of Al-O-P bonds upon adsorption of HCl, a main product of reaction to generate a large amount of P-OH groups and the recovery of Al-O-P upon removal of HCI was revealed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfoxidation reactions of 4,6-dimethyl-2-methylthiopyrimidine have been performed using titanosilicate catalysts in ionic liquids, dioxane and ethanol. The ionic liquid reactions showed superior reactivity compared with molecular solvents. Moreover, on examination of the recycling of the catalyst, a significant increase in the stability of catalyst was found both in terms of recycling activity and leaching of the titanium from the catalyst. The mechanism by which the ionic liquid reduces the solubilisation of the catalysts is explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work describes the immobilization of α-amylase over well ordered mesoporous molecular sieve SBA-15 with different pore diameters synthesized by post synthesis treatment (PST) hydrothermally after reaction at 40°C. The materials were characterized by N 2 adsorption–desorption studies, small angle X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy. Since α-amylase obtained from Bacillus subtilis has dimensions of 35 × 40 × 70 Å it is expected that the protein have access to the pore of SBA-15 (PST-120°C) with diameter 74 Å. The pore dimension is appropriate to prevent considerable leaching. The rate of adsorption of the enzyme on silica of various pore sizes revealed the influence of morphology, pore diameter, pore volume and pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stabilisation of pitch fibres (PFs) is the most important step for their subsequent use in the preparation of carbon fibres (CFs) and their resulting characteristics. The present work studies the influence that the stabilisation time has on the porosity of the CFs, and on the subsequent properties as carbon molecular sieve (CMS). The increase of the stabilisation time carried out at 573 K, from 2 to 8 h favours their CMS properties producing a decrease in the microposity accessible to N2, which gets completely blocked after 6 and 8 h, while the narrow microporosity (V-DR CO2) remains accessible. Adsorption kinetic studies with CH4 and CO2 were performed to assess the possibility of using these CFs as CMS by comparing them with Takeda 3A CMS. The results suggest that there is an optimal stabilisation time which allows the preparation of CFs from an abundant raw precursor with properties similar to Takeda 3A CMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of new silica membranes properties, e.g., molecular sieving properties, has been increasingly gaining importance in the last few years. A novel unsupported silica membrane, referred to as hydrophobic metal-doped silica, was developed by cobalt-doping within the organic templated silica matrix. The novel material was prepared by the acid-catalyzed hydrolysis and condensation process of tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES), which is the precursor for methyl ligand covalently bounded to the silica matrix. The synthesis and surface properties of the novel unsupported silica membrane as well as the unsupported blank silica and modified silica membranes were revealed by surface and microstructural techniques, such as water contact angle measurement, FTIR, X-ray, Solid-state 29Si MAS NMR, TGA and N2 and CO2 adsorption measurements. The results showed that the thermal stability of the organic templated silica matrix was enhanced by cobalt-doping process. A hydrophobic microporous silica membrane material with high thermal stability up to ∼560 °C in oxidizing atmosphere and a narrow pore size distribution centered at 1.1 nm was obtained. Therefore, a novel precursor material for molecular sieve silica membranes applications has been achieved and developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon molecular sieve membranes have been analyzed in supported and unsupported configurations in this experimental study. The membranes were used to adsorb CO2, N2 and CH4, and their adsorption data were analyzed to establish differences in rate and capacity of adsorption between the two types of samples (supported and unsupported). Experimental results show an important effect of the support, which can be considered as an additional parameter to tailor pore size on these carbon membranes. Immersion calorimetry values were measured by immersing the membranes into liquids of different molecular dimensions (dichloromethane, benzene, n-hexane, 2,2-dimethylbutane). Similarities were found between adsorption and calorimetric analysis. The pore volume of the samples analyzed ranged from 0.016 to 0.263 cm3/g. The effect of the pyrolysis temperature, either 550 or 700 °C, under N2 atmosphere was also analyzed. Quantification of the pore-size distribution of the support was done by liquid-liquid displacement porosimetry. The composite membrane was used for CO2/CH4 separation before and after pore plugging was done. The ideal selectivity factors value (4.47) was over the Knudsen theoretical factor (0.60) for membrane pyrolyzed at 600 °C, which indicates the potential application of these membranes for the separation of low-molecular weight gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure of a carbon molecular sieve membrane (CMSM) is characterized using adsorption equilibrium information. The pore size distributions of the CMSM derived from N-2 and CH4 adsorption isotherm are found to be consistent with each other and in agreement with the results of gas permeation experiments as well as the general characteristics of such molecular sieve materials. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As highlighted by the recent ChemComm web themed issue on ionic liquids, this field continues to develop beyond the concept of interesting new solvents for application in the greening of the chemical industry. Here some current research trends in the field will be discussed which show that ionic liquids research is still aimed squarely at solving major societal issues by taking advantage of new fundamental understanding of the nature of these salts in their low temperature liquid state. This article discusses current research trends in applications of ionic liquids to energy, materials, and medicines to provide some insight into the directions, motivations, challenges, and successes being achieved with ionic liquids today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three types of metal-containing molecular sieves with AFI, AEL and CHA structures (Me = Co, Mn, Cr and V) were synthesized hydrothermally and characterized by XRD, XRF, TG, TPR, NH3-TPD and FT-IR. It was revealed that metals were incorporated into the framework of molecular sieves and induced the presence of charge centers. Both cobalt and manganese in the framework of AIPO-5, AlPO-11 and SAPO-34 were not reducible before the structure collapse. The redox behaviours of these catalysts in cyclohexane oxidation at 403 K using O-2 as oxidant were examined. CoAPO-11 exhibited best activity and good selectivities for the monofunctional oxidation products (88.5%). Cyclohexanol was the major product over most catalysts, whereas for Cr-containing molecular sieves, high selectivity of cyclohexanone was observed. Investigation of reaction mechanism based on CoAPO-11 and CrAPO-5 catalysts indicated that the decomposition of cyclohexyl hydroperoxide (CHHP), the intermediate in cyclohexane oxidation, followed the pathway: cyclohexanone <-- CHHP --> cyclohexanol -->cyclohexanone. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hetero atom substituted aluminophosphate molecular sieves Me-VPI-5(Me = Mgt Ti, Sn, Si) were synthesized hydrothermally. Rare earth ions are originally doped into these microporous materials by aqueous solution ion exchange procedures. The phase transitions of the microporous materials are investigated by high-temperature and high-pressure experimental techniques. The influence of the phase transitions on the rare earth ions' spectral structures is discussed, With the increase of temperature, Eu(II)Mg-VPI-5 is converted into Eu(II)Mg-AIPO(4)-8, then into tridymite phase. The pressure has a notable influence on Eu(II) ion's spectral structures. The spectral structures have changed regularly with the increase of pressure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke