947 resultados para ALKALINE LIPASE
Resumo:
Large scale enzymatic resolution of racemic sulcatol 2 has been useful for stereoselective biocatalysis. This reaction was fast and selective, using vinyl acetate as donor of acyl group and lipase from Candida antarctica (CALB) as catalyst. The large scale reaction (5.0 g, 39 mmol) afforded high optical purities for S-(+)-sulcatol 2 and R-(+)-sulcatyl acetate 3, i.e., ee > 99 per cent and good yields (45 per cent) within a short time (40 min). Thermodynamic parameters for the chemoesterification of sulcatol 2 by vinyl acetate were evaluated. The enthalpy and Gibbs free energy values of this reaction were negative, indicating that this process is exothermic and spontaneous which is in agreement with the reaction obtained enzymatically.
Resumo:
The potential of the lipase from Rhizopus oryzae immobilised on SiO(2)-PVA to catalyse the interesterification of the milkfat with soybean oil in a packed bed reactor running on continuous mode was evaluated. The reactor operated continuously for 35 days at 45 degrees C, and during 12 days, no significant decrease in the initial lipase activity was verified. Interesterification yields were in the range from 35 to 38% wt, which gave an interesterified product having 59% lower consistency in relation to non-interesterified blend. Results showed the potential of the lipase from Rhizopus oryzae to mediate the interesterification of milkfat with soybean oil in packed bed reactor, attaining a more spreadable product under a cool temperature. The biocatalyst operational stability was assessed and an inactivation profile was found to follow the Arrhenius model, revealing values of 34 days and 0.034 day(-1), for half-life and a deactivation coefficient, respectively.
Resumo:
Different gelation times (4, 18, 24 and 48 h) were used for the preparation of silica sol-gel supports and encapsulated Candida rugosa lipase using tetraethoxysilane (TEOS) as precursor. The hydrophobic matrices and immobilized lipases produced were characterized with regard to pore volume and size by nitrogen adsorption (BJH method), weight loss upon heating (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), chemical composition (FTIR) and percentage of hydrolysis (POH%) of olive oil. These structural parameters were found to change with the gelation time, but no direct relation was found between the percentage of oil hydrolysis (POH%) and the gelation time. The best combination of high thermal stability and high POH% (99.5%) occurred for encapsulated lipase produced with 24 h gelation time. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The technique based on sol-gel approach was used to generate silica matrices derivatives by hydrolysis of silane compounds. The present work evaluates a hybrid matrix obtained with tetraethoxysilane (TEOS) and polyvinyl alcohol (PVA) on the immobilization yield of lipase from Pseudomonas fluorescens. The resulting polysiloxane-polyvinyl alcohol (POS-PVA) matrix combines the property of PVA as a suitable polymer to retain proteins with an excellent optical, thermal and chemical stability of the host silicon oxide matrix. Aiming to render adequate functional groups to the covalent binding with the enzyme the POS-PVA matrix was chemically modified using epichlorohydrin. The results were compared with immobilized derivative on POS-PVA activated with glutaraldehyde. Immobilization yield based on the recovered lipase activity depended on the activating agent and the highest efficiency (32%) was attained when lipase was immobilized on POS-PVA activated with epichlorohydrin, which, probably, provided more linkage points for the covalent bind of the enzyme on the support. This was confirmed by determining the morphological properties using different techniques as X-ray diffraction and scanning electron microscopy (SEM). Comparative studies were carried out to attain optimal activities for free lipase and immobilized systems. For this purpose, a central composite experimental design with different combinations of pH and temperature was performed. Enzymatic hydrolysis with the immobilized enzyme in the framework of the Michaelis-Menten mechanism was also reported. Under optimum conditions, the immobilized derivative on POS-PVA activated with epichlorohydrin showed to have more affinity for the substrate in the hydrolysis of olive oil, with a Michaelis-Menten constant value (K-m) of 293 mM, compared to the value of 401 mM obtained for the immobilized lipase on support activated with glutaraldehyde. Data generated by DSC showed that both immobilized derivatives have similar thermal stabilities. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Resumo:
Candida rugosa lipase was immobilized by covalent binding on hybrid matrix of polysiloxane-polyvinyl alcohol chemically modified with different activating agents as glutaraldehyde, sodium metaperiodate and carbonyldiimidazole. The experimental results suggested that functional activating agents render different interactions between enzyme and support, producing consequently alterations in the optimal reaction conditions. Properties of the immobilized systems were assessed and their performance on hydrolytic and synthetic reactions were evaluated and compared with the free enzyme. In hydrolytic reactions using p-nitrophenyl palmitate as substrate all immobilized systems showed higher thermal stability and optima pH and temperature values in relation to the free lipase. Among the activating compounds, carbonyldiimidazole resulted in a total recovery of activity on the support and the highest thermal stability. For the butyl butyrate synthesis, the best performance (molar conversion of 95% and volumetric productivity of 2.33 g L-1 h(-1)) was attained with the lipase immobilized on POS-PVA activated with sodium metaperiodate. The properties of the support and immobilized derivatives were also evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopies and chemical composition (FTIR). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effect of different culture conditions have been evaluated concerning the extracellular enzyme activities of the white-rot fungus Ceriporiopsis subvermispora growing on Eucalyptus grandis wood. The consequence of the varied fungal pretreatment on a subsequent chemithermomechanical pulping (CTMP) was addressed. In all cultures, manganese peroxidase (MnP) and xylanase were the predominant extracellular enzymes. The biopulping efficiency was evaluated based on the amount of fiber bundles obtained after the first fiberizing step and the fibrillation levels of refined pulps. It was found that the MnP levels in the cultures correlated positively with the biopulping benefits. On the other hand, xylanase and total oxalate levels did not vary significantly. Accordingly, it was not possible to determine whether MnP accomplishes the effect alone or depends on synergic action of other extracellular agents. Pulp strength and fiber size distribution were also evaluated. The average fiber length of CTMP pulps prepared from untreated wood chips was 623 mu m. Analogous values were observed for most of the biopulps; however, significant amounts of shorter fibers were found in the biopulp prepared from wood chips biotreated in cultures supplemented with glucose plus corn-steep liquor. Despite evidence of reduced average fiber length, biopulps prepared from these wood chips presented the highest improvement in tensile indexes (+28% at 23 degrees Schopper-Riegler).
Resumo:
The enzymatic hydrolysis of sugarcane bagasse was investigated by treating a peroxide-alkaline bagasse with a pineapple stem juice, xylanase and cellulase. Pre-treatment procedures of sugarcane bagasse with alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2(4) factorial designs, with pre-treatment time, temperature, magnesium sulfate and hydrogen peroxide concentration as factors. The responses evaluated were the yield of cellobiose and glucose released from pretreated bagasse after enzymatic hydrolysis. The results show that the highest enzymatic conversion was obtained for bagasse using 2% hydrogen peroxide at 60 degrees C for 16 h in the presence of 0.5% magnesium sulfate. Bagasse (5%) was treated with pineapple stem extract, which contains mixtures of protease and esterase, in combination with xylanase and cellulase. It was observed that the amount of glucose and cellobiose released from bagasse increased with the mixture of enzymes. It is believed that the enzymes present in pineapple extracts are capable of hydrolyze specific linkages that would facilitate the action of digesting plant cell walls enzymes. This increases the amount of glucose and other hexoses that are released during the enzymatic treatment and also reduces the amount of cellulase necessary in a typical hydrolysis. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Milkfat (MF)/soybean oil (SBO) blends ranging from 50% to 100% of milkfat (w/w) were enzymatically interesterified with a sn-1,3 specific lipase from Rhizopus oryzae immobilized on polysiloxane-polyvinyl alcohol matrix, in a solvent free medium. Interesterification progress was monitored by following the changes in the relative proportions of 50-carbon triacylglycerols (TAGS) to 44-carbon TAGs (50/44 ratio) in the reaction. The starting materials and products were also analyzed in terms of consistency measured in a texturometer. All reactions gave interesterified (IE) products with lower consistency than non-interesterified (NIE) MF:SBO blends and interesterification degree varied from 0.54 to 2.60 in 48 h reaction. The highest interesterification degree was achieved for 65:35 MF:SBO blends, which gave 76% reduction in the consistency. These results showed the potential of the immobilized lipase to change the TAGs profile of the MF:SBO blend allowing to obtain cold-spreadable milkfat. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Glycerol-fatty acid esterification has been conducted with lipase from Penicillium camembertii lipase immobilized on epoxy SiO(2)-PVA in solvent-free media, with the major product being 1-monoglyceride, a useful food emulsifier. For a given set of initial conditions, the influence of reaction was measured in terms of product formation and selectivity using different fatty acids as acyl donors. Results were found to be relatively dependent of the chain length of the fatty acids, showing high specificity for both myristic and palmytic acids attaining final mixture that fulfills the requirements established by the World Health Organization to be used as food emulsifiers. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work was to produce an immobilized form of lipase from Burkholderia cepacia (lipase PS) with advantageous catalytic properties and stability to be used in the ethanolysis of different feedstocks, mainly babassu oil and tallow beef. For this purpose lipase PS was immobilized on two different non-commercial matrices, such as inorganic matrix (niobium oxide, Nb(2)O(5)) and a hybrid matrix (polysiloxane-polyvinyl alcohol, SiO(2)-PVA) by covalent binding. The properties of free and immobilized enzymes were searched and compared. The best performance regarding all the analyzed parameters (biochemical properties, kinetic constants and thermal stability) were obtained when the lipase was immobilized on SiO(2)-PVA. The superiority of this immobilized system was also confirmed in the transe-sterification of both feedstocks, attained higher yields and productivities. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was the glycerolysis of babassu oil catalyzed by immobilized lipase from Burkholderia cepacia, in a continuous packed-bed reactor. The best reaction conditions were previously established in batchwise via response surface methodology as a function of glycerol-to-oil molar ratio and reaction temperature. The reactor operated continuously for 22 days at 50 A degrees C, and during the first 6 days, no significant decrease on the initial lipase activity was observed. Monoglycerides concentration was in the range from 25 to 33 wt.%. Subsequently, a progressive decrease in the activity was detected, and an inactivation profile described by Arrhenius model estimated values of 50 days and 1.37 x 10(-2) h(-1), for the half-life and deactivation coefficient, respectively.
Resumo:
This work aimed at the production of stabilized derivatives of Thermomyces lanuginosus lipase (TLL) by multipoint covalent immobilization of the enzyme on chitosan-based matrices. The resulting biocatalysts were tested for synthesis of biodiesel by ethanolysis of palm oil. Different hydrogels were prepared: chitosan alone and in polyelectrolyte complexes (PEC) with kappa-carrageenan, gelatin, alginate, and polyvinyl alcohol (PVA). The obtained supports were chemically modified with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to increase support hydrophobicity, followed by activation with different agents such as glycidol (GLY), epichlorohydrin (EPI), and glutaraldehyde (GLU). The chitosan-alginate hydrogel, chemically modified with TNBS, provided derivatives with higher apparent hydrolytic activity (HA(app)) and thermal stability, being up to 45-fold more stable than soluble lipase. The maximum load of immobilized enzyme was 17.5 mg g(-1) of gel for GLU, 7.76 mg g(-1) of gel for GLY, and 7.65 mg g(-1) of gel for EPI derivatives, the latter presenting the maximum apparent hydrolytic activity (364.8 IU g(-1) of gel). The three derivatives catalyzed conversion of palm oil to biodiesel, but chitosan-alginate-TNBS activated via GLY and EPI led to higher recovered activities of the enzyme. Thus, this is a more attractive option for both hydrolysis and transesterification of vegetable oils using immobilized TLL, although industrial application of this biocatalyst still demands further improvements in its half-life to make the enzymatic process economically attractive.
Resumo:
Copper strike baths are extensively used in metal plating industry as they present the ability to plate adherent copper layers on less-noble metal substrates such as steel and zinc die castings. However, in the last few years, due to environmental controls and safety policies for operators, the plating industry has been interested in replacing the toxic cyanide copper strike baths with environmentally friendly baths. A broad bibliographic review showed that the published papers, referring to the new nontoxic copper strike baths, are patents, having little or no emphasis focused on electrodeposition mechanisms. Therefore, it was decided to study the copper electrodeposition mechanism from a strike alkaline bath prepared with one of the most nontoxic chelating agents cited in many patents which is the 1-hydroxyethane-1,1-diphosphonic acid, known as HEDP. This acid forms very stable water soluble complexes with Cu(2+) ions, thus cupric sulfate was used for preparing the plating bath. The results obtained through a cyclic voltammetry technique showed that Cu(2+) ion reduction to Cu from an HEDP electrodeposition bath occurs via a direct reduction reaction without a formation of Cu(+) intermediates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The present study was carried out on six different ore types from the Salitre Alkaline Complex aiming to determine their mineralogical composition and the major features that are relevant in the mineral processing. The P(2)O(5) grades vary from 9 to 25%. The slime content (-0, 020 mm) varies between 20 and 34% (w/w) and carries 17-22% of the P(2)O(5) content. The samples essentially consist of apatite, iron oxi-hydroxides, ilmenite, clay minerals, carbonate, quartz, pyroxene, perovskite, secondary phosphates and other minor accessory minerals. Below 0.21 mm, apatite essentially occurs in free particles showing a clean surface or a weak coating of it-on oxi-hydroxides; the highly covered apatite (not recoverable by flotation) varies from 6 to 9%. In the deslimed fraction (above 0.020 mm) more than 97% of the total phosphor content occurs as apatite; the estimated P 2 0 5 potential recovery in flotation concentration is over 90% (71-76% overall recovery).