634 resultados para ALIPHATIC POLYCARBONATES
Resumo:
Reactions of bis(isonitrosoethylacetoacetato)palladium(II), Pd(IEAA)2,with straight chain non-bulky alkylamines, RNH2(R = CH3, C2H5, n-C3H7or n-C4H9) in the mole ratio 1:1 gave bis (B-alkylisonitrosoethylacetoacetateimino)Palladium(II), Pd(R-IEAI)2. In this reaction the coordinated carbonyl groups of Pd(IEAA)2 undergo condensation with amines fo rming Schiff bases (>CNR). On the other hand, the reactions of Pd(IEAA)2 with a large excess of amine yielded N-alkylamido bridgedisonitrosoethylacetoacetatedipalladium(II), μ-(NHR)2[Pd(IEAA)]2 complexes. The complexes are characterized by elemental analyses, magnetic susceptib ility, i.r., p.m.r. and in some cases, nitrogen 1s X-ray photoelectron and mass spectral studies.
Resumo:
Five tartrate-amine complexes have been studied in terms of crystal packing and hydrogen bonding frameworks. The salts are 3-bromoanilinium-L-monohydrogen tartrate 1, 3-fluoroanilinium-D-dibenzoylmonohydrogen tartrate 2, 1-nonylium-D-dibenzoylmonohydrogen tartrate 3, 1 -decylium-D-dibenzoylmonohydrogen tartrate 4, and 1,4-diaminobutanium-D-dibenzoyl tartrate trihydrate 5. The results indicate that there are no halogen-halogen interactions in the haloaromatic-tartrate complexes. The anionic framework allows accomodation of ammonium ions that bear alkyl chain residues of variable lengths. The long chain amines in these structures remain disordered while the short chain amines form multidirectional hydrogen bonds on either side.
Resumo:
A new class of epoxy resins having N-N bonds in their structure has been synthesized by reacting N,N'-aliphatic dicarboxyl bis(hydrazones) (the aldehyde/ketone derivatives of malonic, adipic, and sebacic dihydrazides) with epichlorohydrin. The reactivity of the[GRAPHICS] protons as a function of the substituent group and the number of methylene spacer groups present in the hydrazone has been examined. The resins obtained have been characterized by elemental and epoxy equivalent analyses and IR and NMR spectra. All these resins are found to have adequate viscosity and cure easily with amine curatives at elevated temperatures. Relevant properties for their use as binders in propellant formulations, such as thermal stability, heat of combustion, density, temperature dependence of viscosity, and mechanical strength of the composites, have been evaluated. (C) 1997 John Wiley & Sons, Inc.
Resumo:
N,N'-Malonylbis-,N,N'-adipinylbis- and N,N'-sebacoylbis-(hydrazones) 1 of various aldehydes and ketones have been prepared and characterized by elemental analyses, melting points, and H-1 NMR and IR spectral data.
Resumo:
Nanodendritic Pd is electrodeposited on poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode. Electrodeposited Pd is non-dendritic in the absence of PEDOT. The electrooxidation of C-3-aliphatic alcohols, namely, propanol (PA), 1,2- propanediol (1, 2-PD), 1, 3-propanediol (1, 3-PD), and glycerol (GL) is studied in 1.0 M NaOH. The catalytic activity of nanodendritic Pd is greater than that of non-dendritic Pd for oxidation of the four alcohols molecules. Among those molecules the oxidation rate increases as: PA< 1, 2-PD < 1, 3-PD < GL. The cyclic voltammetric oxidation current peak appearing in the reverse direction of the sweep is greatly influenced by the nature of alcohol. The reduction of oxide film on Pd surface is attributed to affect the magnitude of backward peak current density. The amperometry and repeated cyclic voltammetry data suggest a high stability of nanodendritic Pd in alkaline medium. Glycerol is expected to be an appropriate alcohol for application as a fuel in alkaline fuel cells at nanodendritic electrodeposited Pd.
Resumo:
Strong quenching of the fluorescence of aromatic hydrocarbons by tertiary aliphatic amines has been observed in solution at room temperature. Accompanying the fluorescence quenching of aromatic hydrocarbons, an anomalous emission is observed. This new emission is very broad, structureless and red-shifted from the original hydrocarbon fluorescence.
Kinetic studies indicate that this anomalous emission is due to an exciplex formed by an aromatic hydrocarbon molecule in its lowest excited singlet state with an amine molecule. The fluorescence quenching of the aromatic hydrocarbons is due to the depopulation of excited hydrocarbon molecules by the formation of exciplexes, with subsequent de-excitation of exciplexes by either radiative or non-radiative processes.
Analysis of rate constants shows the electron-transfer nature of the exciplex. Through the study of the effects on the frequencies of exciplex emissions of substituents on the hydrocarbons, it is concluded that partial electron transfer from the amine molecule to the aromatic hydrocarbon molecule in its lowest excited singlet state occurs in the formation of exciplex. Solvent effects on the exciplex emission frequencies further demonstrate the polar nature of the exciplex.
A model based on this electron-transfer nature of exciplex is proposed and proves satisfactory in interpreting the exciplex emission phenomenon in the fluorescence quenching of aromatic hydrocarbons by tertiary aliphatic amines.
Resumo:
The synthesis of iodonium salts of the general formula [C6H5IR]+X-, where R is an alkyl group and x- is a stabilizing anion, was attempted. For the choice of R three groups were selected, whose derivatives are known to be sluggish in SN1 and SN2 substitutions: cyclopropyl, 7, 7 -dimethyl-1-norbornyl, and 9 -triptycyl. The synthetic routes followed along classical lines which have been exploited in recent years by Beringer and students. Ultimately, the object of the present study was to study the reactions of the above salts with nucleophiles. In none of the three cases, however, was it possible to isolate a stable salt. A thermodynamic argument suggests that this must be due to kinetic instability rather than thermodynamic instability. Only iodocyclopropane and 1-iodoapocamphane formed isolable iododichlorides.
Several methylated 2, 2-difluoronorbornanes were prepared with the intent of correlating fluorine -19 chemical shifts with geometric features in a rigid system. The effect of a methyl group on the shielding of a β -fluorine is dependent upon the dihedral angle; the maximum effect (an upfield shift of the resonance) occurs at 0° and 180°, whereas almost no effect is felt at a dihedral angle of 120°. The effect of a methyl group on a γ -fluorine is to strongly shift the resonance downfield when fluorine and methyl group are in a 1, 3 - diaxial-like relationship. Molecular orbital calculations of fluorine shielding in a variety of molecules were carried out using the formalism developed by Pople; the results are, at best, in modest agreement with experiment.
Resumo:
In this study, by the use of partial least squares (PLS) method and 26 quantum chemical descriptors computed by PM3 Hamiltonian, a quantitative structure-property relationship (QSPR) model was developed for reductive dehalogenation rate constants of 13 halogenated aliphatic compounds in sediment slurry under anaerobic conditions. The model can be used to explain the dehalogenation mechanism. Halogenated aliphatic compounds with great energy of the lowest unoccupied molecular orbital (E-lumo), total energy (TE), electronic energy (EE), the smallest bond order of the carbon-halogen bonds (BO) and the most positive net atomic charges on an atom of the molecule (q(+)) values tend to be reductively dehalogenated slow, whereas halogenated aliphatic compounds with high values of molecular weight (Mw), average molecular polarizability (a) and core-core repulsion energy (CCR) values tend to be reductively dehalogenated fastest. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
A series of novel poly(ester-carbonate)s bearing pendant allyl ester groups P(LA-co-MAC)s were prepared by ring-opening copolymerization Of L-lactide (LA) and 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one (MAC) with diethyl zinc (ZnEt2) as initiator. NMR analysis investigated the microstructure of the copolymer. DSC results indicated that the copolymers displayed a single glass-transition temperature (T-g), which was indicative of a random copolymer, and the Tg decreased with increasing carbonate content in the copolymer.
Resumo:
This article deals with (1) synthesis of novel cyclic carbonate monomer (2-oxo [1,3]dioxan-5-yl)carbamic acid benzyl ester (CAB) containing protected amino groups; (2) ring-opening copolymerization of the cyclic monomer with L-lactide (LA) to provide novel degradable poly(ester-carbonate)s with functional groups; (3) removal of the protective benzyloxycarbonyl (Cbz) groups by catalytic hydrogenation to afford the corresponding poly(ester-co-carbonate)s with free amino groups; (4) grafting of oligopeptide Gly-Arg-Gly-Asp-Ser-Tyr (GRGDSY, abbreviated as RGD) onto the copolymer pendant amino groups in the presence of 1,1'-carbonyldiimidazole (CDI).
Resumo:
Cobalt porphyrin complex ((TPPCoX)-X-III) (TPP = 5, 10, 15, 20-Tetraphenylporphyrin; X = halide) in combination with ionic organic ammonium salt was used for the regio-specific copolymerization of propylene oxide and carbon dioxide. A turnover frequency of 188 h(-1) was achieved after 5 h, and the byproduct propylene carbonate was successfully controlled to below 1%, where the obtained poly(propylene carbonate) (PPC) showed number average molecular weight (M-n) of 48 kg/mol, head-to-tail content of 93%, and carbonate linkage of over 99%.