296 resultados para ACIDOSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A partial differential equation model is developed to understand the effect that nutrient and acidosis have on the distribution of proliferating and quiescent cells and dead cell material (necrotic and apopotic) within a multicellular tumour spheroid. The rates of cell quiescence and necrosis depend upon the local nutrient and acid concentrations and quiescent cells are assumed to consume less nutrient and produce less acid than proliferating cells. Analysis of the differences in nutrient consumption and acid production by quiescent and proliferating cells shows low nutrient levels do not necessarily lead to increased acid concentration via anaerobic metabolism. Rather, it is the balance between proliferating and quiescent cells within the tumour which is important; decreased nutrient levels lead to more quiescent cells, which produce less acid than proliferating cells. We examine this effect via a sensitivity analysis which also includes a quantification of the effect that nutrient and acid concentrations have on the rates of cell quiescence and necrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the Na+-HCO3- cotransporter NBC1 cause severe proximal tubular acidosis (pRTA) associated with ocular abnormalities. Recent studies have suggested that at least some NBC1 mutants show abnormal trafficking in the polarized cells. This study identified a new homozygous NBC1 mutation (G486R) in a patient with severe pRTA. Functional analysis in Xenopus oocytes failed to detect the G486R activity due to poor surface expression. In ECV304 cells, however, G486R showed the efficient membrane expression, and its transport activity corresponded to approximately 50% of wild-type (WT) activity. In Madin-Darby canine kidney (MDCK) cells, G486R was predominantly expressed in the basolateral membrane domain as observed for WT. Among the previously identified NBC1 mutants that showed poor surface expression in oocytes, T485S showed the predominant basolateral expression in MDCK cells. On the other hand, L522P was exclusively retained in the cytoplasm in ECV304 and MDCK cells, and functional analysis in ECV304 cells failed to detect its transport activity. These results indicate that G486R, like T485S, is a partial loss of function mutation without major trafficking abnormalities, while L522P causes the clinical phenotypes mainly through its inability to reach the plasma membranes. Multiple experimental approaches would be required to elucidate potential disease mechanism by NBC1 mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To describe the composition of metabolic acidosis in patients with severe sepsis and septic shock at intensive care unit admission and throughout the first 5 days of intensive care unit stay. Design: Prospective, observational study. Setting: Twelve-bed intensive care unit. Patients: Sixty patients with either severe sepsis or septic shock. Interventions: None. Measurements and Main Results: Data were collected until 5 days after intensive care unit admission. We studied the contribution of inorganic ion difference, lactate, albumin, phosphate, and strong ion gap to metabolic acidosis. At admission, standard base excess was -6.69 +/- 4.19 mEq/L in survivors vs. -11.63 +/- 4.87 mEq/L in nonsurvivors (p < .05); inorganic ion difference (mainly resulting from hyperchloremia) was responsible for a decrease in standard base excess by 5.64 +/- 4.96 mEq/L in survivors vs. 8.94 +/- 7.06 mEq/L in nonsurvivors (p < .05); strong ion gap was responsible for a decrease in standard base excess by 4.07 +/- 3.57 mEq/L in survivors vs. 4.92 +/- 5.55 mEq/L in nonsurvivors with a nonsignificant probability value; and lactate was responsible for a decrease in standard base excess to 1.34 +/- 2.07 mEq/L in survivors vs. 1.61 +/- 2.25 mEq/L in nonsurvivors with a nonsignificant probability value. Albumin had an important alkalinizing effect in both groups; phosphate had a minimal acid-base effect. Acidosis in survivors was corrected during the study period as a result of a decrease in lactate and strong ion gap levels, whereas nonsurvivors did not correct their metabolic acidosis. In addition to Acute Physiology and Chronic Health Evaluation 11 score and serum creatinine level, inorganic ion difference acidosis magnitude at intensive care unit admission was independently associated with a worse outcome. Conclusions: Patients with severe sepsis and septic shock exhibit a complex metabolic acidosis at intensive care unit admission, caused predominantly by hyperchloremic acidosis, which was more pronounced in nonsurvivors. Acidosis resolution in survivors was attributable to a decrease in strong ion gap and lactate levels. (Crit Care Med 2009; 37:2733-2739)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ruminal acidosis is due to excessive ingestion of carbohydrates of rapid fermentation without previous adaptation of the microorganisms, causing severe metabolic disturbances to the animals. The objective of the present study was to assess the neutrophilic oxidative metabolism in sheep treated with sodium monensin in experimentally induced ruminal lactic acidosis. A total of 18 male sheep, half-bred (ideal x Merino), fistulated in the rumen, were used; nine of them received 33 mg/kg of the ionophore diet per day, for 30 days; the others were controls. The acidosis was induced by supplying 15g of sucrose/kg of body weight. The clinical evaluation and the rumen and blood samples were obtained before (0h) and at 6, 12, 24 and 48 hours post-induction. In both groups, all the animals presented clinical manifestations of ruminal lactic acidosis 6 hours after the induction. From this period on, a significant pH decrease (P<0.05) was observed in the ruminal fluid, which reached levels below 5. There were relevant differences (P<0.05) between the groups 12 hours after the induction, when the sheep treated with monensin had higher values than those of the control group. During this period, the oxidative metabolism of the neutrophils remained inhibited, and the reestablishment of this function only occurred in the sheep which received monensin. Blood pH, plasmatic glucose and the ionizable calcium suffered alterations within its levels. The seric cortisol concentration rose significantly (P<0.05) in both groups, although differences (P<0.05) between them were found at the end of the observation period. The treatment with monensin did not influence the oxidative metabolism of the neutrophils inhibited by the lactic acidosis; however, a faster recovery of this metabolism was verified in the animals treated with the ionophore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To report the severe metabolic acidosis identified in a group of 11 healthy mules anaesthetized with halothane for castration.Study design Data generated from a prospective study.Animals Eleven mules aged 2.5-8 years, weighing 230-315 kg and 11 horses aged 1.5-3.5 years, weighing 315-480 kg.Methods Animals were anaesthetized for castration as part of an electroencephalographic study. Preanaesthetic medication was acepromazine (0.03 mg kg(-1)) administered through a preplaced jugular venous catheter. Anaesthesia was induced 30-90 minutes later with intravenous thiopental (10 mg kg(-1)). After orotracheal intubation, anaesthesia was maintained with halothane vaporised in oxygen. The animals' lungs were ventilated to maintain the end-tidal CO(2) concentration between 3.9 and 4.5 kPa (29-34 mmHg). Anaesthetic monitoring included invasive blood pressure measurement via the auricular artery (mules) and submandibular branch of the facial artery (horses). Arterial blood gas samples were drawn from these catheters at three time points during surgery and pH, PaCO(2), base excess (ecf) and HCO(3)(-) were measured. Values were compared between groups using a Mann-Whitney test. p was taken as <0.05. Results are reported as median (range).Results PaCO(2) did not differ between groups but pH was significantly lower in mules [7.178 (7.00-7.29)] compared to horses [7.367 (7.24-7.43)] (p = 0.0002). HCO(3)(-) values were significantly lower in the mules [16.6 (13.0-22.3) mM] compared to horses [23.7 (20.9-23.7) mM] (p = 0.0001), whilst base excess (ecf) was significantly more negative in the mules [-11.4 (-1.27 to -16) mM] compared to horses [-1.3 (-5.8 to +2.4) mM] (p = 0.0004).Conclusion and clinical relevance This study demonstrated severe metabolic acidosis in healthy mules, which may have prompted intervention with drug therapies in a clinical arena. It is probable that the acidosis existed prior to anaesthesia and caused by diet, but other possible causes are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this experiment was to determine if ruminal temperature rise coincides with pH reduction using an acidosis challenge model. Twelve ruminally cannulated steers (518 ± 28 kg BW) were administered ruminal temperature-monitoring devices that recorded temperature every 2 min. Steers were fed a 63% concentrate diet at 1.6% BW for 20 d before being randomly assigned to 1 of 3 acidosis challenge treatments: no dietary change (CON), onehalf of daily DMI replaced with cracked corn (HALF), or all of daily DMI replaced with cracked corn (CORN). The challenge was initiated by ruminally dosing steers with their treatment diets. Ruminal pH and rectal temperatures (Trec) were recorded every 3 h for 72 h. All steers were offered CON diets at 24 and 48 h after challenge. Ruminal pH showed a treatment × day effect (P = 0.01). Ruminal pH of CORN steers was lower (P = 0.03) than that of HALF steers on d 1, was lower (P ≤ 0.004) than that of HALF and CON steers on d 2, and tended to be lower (P ≤ 0.10) than that of HALF and CON steers on d 3. Treatment did not affect (P ≥ 0.42) RecT. Ruminal temperature (Trum) showed a treatment · d-1 × h-1 after feeding interaction (P < 0.01). At 3 h after challenge, Trum of CORN and HALF steers was higher (P ≤ 0.01) than that of CON steers. On d 2, Trum of CORN steers was higher (P ≤ 0.03) than that of CON between 6 and 12 h after feeding. From 15 to 21 h after feeding on d 2, Trum of HALF steers was higher (P < 0.01) than that of CORN and CON steers. On d 3, at the time of feeding until 3 h later, Trum of CORN steers was lower (P ≤ 0.04) than that of all other steers. Rectal temperature was correlated (P ≤ 0.01) with Trum on all days for CON and CORN steers. Ruminal pH was negatively correlated (P ≤ 0.04) with Trec on d 2 and Trum on d 1 in CORN steers, and Trum was negatively correlated (P ≤ 0.02) with ruminal pH in HALF and CON steers on d 1 and 3, respectively. The amount of time above Trum of 39.0°C or 39.45°C was correlated (P ≤ 0.05) with the time spent below a ruminal pH of 5.5 in CORN steers; however, time above Trum of 39.0°C did not differ (P = 0.87) among treatments. Results indicate that there is a negative relationship between Trum and ruminal pH during an acidotic episode; therefore, Trum monitoring can detect a potential acidotic episode. © 2012 American Society of Animal Science. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Na+/H+ exchanger isoform 3 (NHE3) is essential for HCO3- reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO3- concentration in the cell culture medium and respiratory acidosis by increasing CO2 tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 +/- 0.02) and severe (6.95 +/- 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 +/- 0.03) and severe (6.86 +/- 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The aim of this study was to compare the efficacy of treating osmotic diarrhea and dehydration in calves with hypertonic saline solution (HSS) IV, isotonic electrolyte solution (IES) PO, and a combination of these 2 solutions (HSS + IES). Experimental Design Eighteen male calves 830 days of age were used to evaluate the efficacy of 3 methods of fluid therapy after induction of osmotic diarrhea and dehydration. The diarrhea and dehydration were induced by administration of saccharose, spironolactone, and hydrochlorothiazide for 48 hours. The animals were randomly divided into 3 experimental groups: Group 1: 7.2% hypertonic saline solution-HSS (5 mL/kg IV); Group 2: oral isotonic electrolyte solution IES (60 mL/kg PO); or Group 3: HSS+IES. Clinical signs and laboratory finding observed 48 hours post-induction (Time 0) included diarrhea, dehydration, lethargy, and metabolic acidosis. Results Calves treated with HSS + IES experienced decreases in hematocrit, total protein concentration, albumin concentration, urea nitrogen concentration, and plasma volume as well as increases in blood pH, blood bicarbonate concentration, and central venous pressure between 1 and 3 hours post-treatment. These findings also were observed in animals treated with IES, however, at a slower rate than in the HSS + IES-treated animals. Animals treated with HSS continued to display signs of dehydration, lethargy, and metabolic acidosis 24 hours post-treatment. Conclusion Treatment with a combination of HSS and IES produced rapid and sustainable correction of hypovolemia and metabolic acidosis in calves with noninfections diarrhea and dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the prevalence of incomplete distal renal tubular acidosis (idRTA) in men with recurrent calcium nephrolithiasis and its potential impact on bone mineral density. We conducted a retrospective analysis of 150 consecutive, male idiopathic recurrent calcium stone formers (RCSFs), which had originally been referred to the tertiary care stone center of the University Hospital of Berne for further metabolic evaluation. All RCSFs had been maintained on a free-choice diet while collecting two 24-h urine samples and delivered second morning urine samples after 12 h fasting. Among 12 RCSFs with a fasting urine pH >5.8, a modified 3-day ammonium chloride loading test identified idRTA in 10 patients (urine pH >5.32, idRTA group). We matched to each idRTA subject 5 control subjects from the 150 RCSFs, primary by BMI and then by age, i.e., 50 patients, without any acidification defect (non-RTA group) for comparative biochemistry and dual energy X-ray absorptiometry (DEXA) analyses. The prevalence of primary idRTA among RCSFs was 6.7% (10/150). Patients with idRTA had significantly higher 2-h fasting and 24-h urine pH (2-h urine pH: 6.6 ± 0.4 vs. 5.2 ± 0.1, p = 0.001; 24-h urine pH: 6.1 ± 0.2 vs. 5.3 ± 0.3, p = 0.001), 24-h urinary calcium excretion (7.70 ± 1.75 vs. 5.69 ± 1.73 mmol/d, p = 0.02), but significantly lower 24-h urinary urea excretion (323 ± 53 vs. 399 ± 114 mmol/d, p = 0.01), urinary citrate levels (2.32 ± 0.82 vs. 3.01 ± 0.72 mmol/d, p = 0.04) and renal phosphate threshold normalized for the glomerular filtration rate (TmPO(4)/GFR: 0.66 ± 0.17 vs. 0.82 ± 0.21, p = 0.03) compared to non-RTA patients. No significant difference in bone mineral density (BMD) was found between idRTA and non-RTA patients for the lumbar spine (LS BMD (g/cm(2)): 1.046 ± 0.245 SD vs. 1.005 ± 0.119 SD, p = 0.42) or femoral neck (FN BMD (g/cm(2)): 0.830 ± 0.135 SD vs. 0.852 ± 0.127 SD). Thus, idRTA occurs in 1 in 15 male RCSFs and should be sought in all recurrent calcium nephrolithiasis patients. Bone mineral density, however, does not appear to be significantly affected by idRTA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Awake hamsters equipped with the dorsal window chamber preparation were subjected to hemorrhage of 50% of the estimated blood volume. Initial resuscitation (25% of estimated blood volume) with polymerized bovine hemoglobin (PBH) or 10% hydroxyethyl starch (HES) occurred in concert with an equivolumetric bleeding to simulate the early, prehospital setting (exchange transfusion). Resuscitation (25% of estimated blood volume) without bleeding was performed with PBH, HES, or autologous red blood cells (HES-RBCs). Peripheral microcirculation, tissue oxygenation, and systemic hemodynamic and blood gas parameters were assessed. After exchange transfusion, base deficit was -8.6 +/- 3.7 mmol/L (PBH) and -5.1 +/- 5.3 mmol/L (HES) (not significant). Functional capillary density was 17% +/- 6% of baseline (PBH) and 31% +/- 11% (HES) (P < 0.05) and arteriolar diameter 73% +/- 3% of baseline (PBH) and 90% + 5% (HES) (P < 0.01). At the end, hemoglobin levels were 3.7 +/- 0.3 g/dL with HES, 8.2 +/- 0.6 g/dL with PBH, and 10.4 +/- 0.8 g/dL with HES-RBCs (P < 0.01 HES vs. PBH and HES-RBCs, P < 0.05 PBH vs. HES-RBCs). Base excess was restored to baseline with PBH and HES-RBCs, but not with HES (P < 0.05). Functional capillary density was 46% +/- 5% of baseline (PBH), 62% + 20% (HES-RBCs), and 36% +/- 19% (HES) (P < 0.01 HES-RBCs vs. HES). Peripheral oxygen delivery and consumption was highest with HES-RBCs, followed by PBH (P < 0.05 HES-RBCs vs. PBH, P < 0.01 HES-RBCs and PBH vs. HES). In conclusion, the PBH led to a correction of base deficit comparable to blood transfusion. However, oxygenation of the peripheral tissue was inferior with PBH. This was attributed to its negative impact on the peripheral microcirculation caused by arteriolar vasoconstriction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucosal pH (pHi) is influenced by local perfusion and metabolism (mucosal-arterial Pco2 gradient, DeltaPco2), systemic metabolic acidosis (arterial bicarbonate), and respiration (arterial Pco2). We determined these components of pHi and their relation to outcome during the first 24 h of intensive care. We studied 103 patients with acute respiratory or circulatory failure (age, 63 +/- 2 [mean +/- SEM]; Acute Physiology and Chronic Health Evaluation II score, 20 +/- 1; Sequential Organ Failure Assessment score, 8 +/- 0). pHi, and the effects of bicarbonate and arterial and mucosal Pco2 on pHi, were assessed at admission, 6, and 24 h. pHi was reduced (at admission, 7.27 +/- 0.01) due to low arterial bicarbonate and increased DeltaPco2. Low pHi (<7.32) at admission (n = 58; mortality, 29% vs. 13% in those with pHi >/=7.32 at admission; P = 0.061) was associated with an increased DeltaPco2 in 59% of patients (mortality, 47% vs. 4% for patients with low pHi and normal DeltaPco2; P = 0.0003). An increased versus normal DeltaPco2, regardless of pHi, was associated with increased mortality at admission (51% vs. 5%; P < 0.0001; n = 39) and at 6 h (34% vs. 13%; P = 0.016; n = 45). A delayed normalization or persistently low pHi (n = 47) or high DeltaPco2 (n = 25) was associated with high mortality (low pHi [34%] vs. high DeltaPco2 [60%]; P = 0.046). In nonsurvivors, hypocapnia increased pHi at baseline, 6, and 24 h (all P acidosis. Inadequate tissue perfusion may persist despite stable hemodynamics and contributes to poor outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of hydration status on cerebral blood flow (CBF) and development of cerebrospinal fluid (CSF) lactic acidosis were evaluated in rabbits with experimental pneumococcal meningitis. As loss of cerebrovascular autoregulation has been previously demonstrated in this model, we reasoned that compromise of intravascular volume might severely affect cerebral perfusion. Furthermore, as acute exacerbation of the inflammatory response in the subarachnoid space has been observed after antibiotic therapy, animals were studied not only while meningitis evolved, but also 4-6 h after treatment with antibiotics to determine whether there would also be an effect on CBF. To produce different levels of hydration, animals were given either 50 ml/kg per 24 h of normal saline ("low fluid") or 150 ml/kg 24 h ("high fluid"). After 16 h of infection, rabbits that were given the lower fluid regimen had lower mean arterial blood pressure (MABP), lower CBF, and higher CSF lactate compared with animals that received the higher fluid regimen. In the first 4-6 h after antibiotic administration, low fluid rabbits had a significant decrease in MABP and CBF compared with, and a significantly greater increase in CSF lactate concentration than, high fluid rabbits. This study suggests that intravascular volume status may be a critical variable in determining CBF and therefore the degree of cerebral ischemia in meningitis.