986 resultados para 60-460A
Resumo:
A total of 1547 thermal conductivity values were determined by both the NP (needle probe method) and the QTM (quick thermal conductivity meter) on 1319 samples recovered during DSDP Leg 60. The NP method is primarily for the measurement of soft sedimentary samples, and the result is free from the effect of porewater evaporation. Measurement by the QTM method is faster and is applicable to all types of samples-namely, sediments (soft, semilithified, and lithified) and basement rocks. Data from the deep holes at Sites 453, 458, and 459 show that the thermal conductivity increases with depth, the rate of increase ranging from (0.18 mcal/cm s °C)/100 m at Site 459 to (0.72 mcal/cm s °C)/100 m at Site 456. A positive correlation between the sedimentary accumulation rate and the rate of thermal conductivity increase with depth indicates that both compaction and lithification are important factors. Drilled pillow basalts show nearly uniform thermal conductivity. At She 454 the thermal conductivity of one basaltic flow unit was higher near the center of the unit and lower toward the margin, reflecting variable vesicularity. Hydrothermally altered basalts at Site 456 showed higher thermal conductivity than fresh basalt because secondary calcite, quartz, and pyrite are generally more thermally conductive than fresh basalt. The average thermal conductivity in the top 50 meters of sediments correlates inversely with water depth because of dissolution of calcite, a mineral with high thermal conductivity, from the sediments as the water depth exceeds the lysocline and the carbonate compensation depth. Differences between the Mariana Trench data and the Mariana Basin and Trough data may reflect different abundances of terrigenous material in the sediment. There are remarkable correlations between thermal conductivity and other physical properties. The relationship between thermal conductivity and compressional wave velocity can be used to infer the ocean crustal thermal conductivity from the seismic velocity structure.
Resumo:
Sediments recovered by drilling during Legs 58, 59, and 60 in the North and South Philippine Sea have been analyzed by X-ray diffractometry. The CaCO3 content was measured separately. The sites encompass several volcanic ridges and intervening inter-arc basin troughs as well as sites on the Mariana arc fore-arc sediment prism and the Mariana Trench. The sediments at all sites received major volcanogenic input from the various arcs; they tend to be rich in volcanic glass, with associated quartz, feldspar, pyroxenes and amphibole. Carbonate is a major component only at Site 445 at the southern end of the Daito Ridge, and at Site 448 on the Palau-Kyushu Ridge. All other sites were either deep relative to the carbonate compensation depth or had very high non-carbonate sedimentation rates. Clay minerals are mainly smectite and illite with lesser variable proportions of chlorite and kaolinite. Smectite predominates over illite except at sites in the Shikoku Basin and the Daito Ridge, and at one site in the Mariana Trench. At several sites, smectite increases and illite decreases with depth. Principal zeolites are phillipsite and clinoptilolite. Analcime occurs in some samples.
Resumo:
A bulk-sediment and clay-fraction X-ray diffraction study of samples from Deep Sea Drilling Project Leg 60 shows an abundance of the following minerals: plagioclase feldspar, zeolite, smectite, Fe-Mg chlorite, attapulgite, and serpentine. Amorphous compounds are also abundant. The variations in abundance of the different components correspond to episodes of volcanic activity through time. Deposits from periods of great activity are composed of sediments very rich in amorphous matter and in "primary" minerals (e.g., plagioclase feldspars). During relatively quiet periods, clay minerals and zeolites predominate.
Resumo:
Eocene to Pleistocene volcanogenic sediments from the Mariana Trough and the Mariana arc-trench system have been studied by X-ray diffraction, X-ray fluorescence, and atomic absorption, and with a scanning electron microscope with an X-ray-energy-dispersive attachment. The mineralogical composition of the volcaniclastic sediments (tuffs) is the same as that of the other associated sediments (mudstones). Diagenetic alterations are significant and seem to result from two processes. The first (low-temperature alteration) develops with age and depth; it consists of the genesis of pure smectite, coupled with zeolites (phillipsite, clinoptilolite). The second is limited to sediments immediately overlying basalts and to the altered basalts themselves. It consists of the massive development of palygorskite, and seems to be linked with hydrothermal activity in the igneous basement.
Resumo:
Major and trace element analyses are presented for 110 samples from the DSDP Leg 60 basement cores drilled along a transect across the Mariana Trough, arc, fore-arc, and Trench at about 18°N. The igneous rocks forming breccias at Site 453 in the west Mariana Trough include plutonic cumulates and basalts with calc-alkaline affinities. Basalts recovered from Sites 454 and 456 in the Mariana Trough include types with compositions similar to normal MORB and types with calc-alkaline affinities within a single hole. At Site 454 the basalts show a complete compositional transition between normal MORB and calc-alkaline basalts. These basalts may be the result of mixing of the two magma types in small sub-crustal magma reservoirs or assimilation of calc-alkaline, arc-derived vitric tuffs by normal MORB magmas during eruption or intrusion. A basaltic andesite clast in the breccia recovered from Site 457 on the active Mariana arc and samples dredged from a seamount in the Mariana arc are calc-alkaline and similar in composition to the basalts recovered from the Mariana Trough and West Mariana Ridge. Primitive island arc tholeiites were recovered from all four sites (Sites 458-461) drilled on the fore-arc and arc-side wall of the trench. These basalts form a coherent compositional group distinct from the Mariana arc, West Mariana arc, and Mariana Trough calc-alkaline lavas, indicating temporal (and perhaps spatial?) chemical variations in the arc magmas erupted along the transect. Much of the 209 meters of basement cored at Site 458 consists of endiopside- and bronzite-bearing, Mg-rich andesites with compositions related to boninites. These andesites have the very low Ti, Zr, Ti/Zr, P, and rare-earthelement contents characteristic of boninites, although they are slightly light-rare-earth-depleted and have lower MgO, Cr, Ni, and higher CaO and Al2O3 contents than those reported for typical boninites. The large variations in chemistry observed in the lavas recovered from this transect suggest that diverse mantle source compositions and complex petrogenetic process are involved in forming crustal rocks at this intra-oceanic active plate margin.
Resumo:
The 11 frozen cores from the Mariana Trough area from Holes 452 through 455, 459B, 460, and 460A are characteristically low in organic carbon (less than 0.2%) and contain a predominance of n-alkanes within the saturates fraction. There is no odd-predominance of n-alkanes as is typical of immature recent sediments. However, recent sediments containing immature organic matter with normal distributions of n-alkanes {OEP1 approximately equal to 1) are characteristic of sediments derived from purely marine sources (Brooks, 1970; Powell and McKirdy, 1973; Tissot et al., 1975). This type of sediment is very rare. However, at least one case where an immature sediment contains an OEP of near 1 has been reported in samples similar to those reported herein - that is, the Cariaco Trench (Hunt, 1979).
Resumo:
Interstitial water data obtained during Leg 60 show complex gradients at Site 453 in a sediment pond on the west side of the Mariana Trough. Concentrations of Ca, Mg, Sr, as well as of K and Li, suggest that slightly altered sea water penetrates below the sediments, most likely through brecciated igneous and metamorphic rocks, mainly gabbros, lying at the base of the pond. Interstitial water concentration gradients suggest that reactions involving igneous matter lead to increases in calcium and strontium in the pore fluids and to decreases in magnesium. Upward advection of water through the sediments does not appear to occur, so that the advected sea water most likely penetrates deeper into the breccias, perhaps leading to further hydrothermal activity elsewhere in this area. Interstitial water gradients at Sites 458 (conservative) and 459 suggest that reactions in the sediments and underlying basalts are responsible for increases in dissolved calcium and decreases in magnesium and potassium.