995 resultados para 55-431
Resumo:
One of the objectives of Leg 55 was to investigate the Tertiary history of sedimentation and environment on the Emperor Seamounts after their volcanic activity. For the three first sites, 430, 431, and 432, drilled on Ojin, Nintoku, and Yömei Seamounts, the Neogene sedimentary deposits are not well represented and are not typical pelagic sediments. Except for two holes (430A and 432), where we found calcareous oozes, the sediments are heterogeneous sands, gravels, and pebbly mudstones with a wide range in grain size and composition. Two phenomena characterize these deposits: the inheritance of volcaniclastic material and its alteration, and the authigenesis of secondary minerals including silicates, phosphates, and ferromanganese oxides formed under volcanic influence in a marine environment.
Resumo:
Miocene paleoceanographic evolution exhibits major changes resulting from the opening and closing of passages, the subsequent changes in oceanic circulation, and development of major Antarctic glaciation. The consequences and timing of these events can be observed in variations in the distribution of deep-sea hiatuses, sedimentation patterns, and biogeographic distribution of planktic organisms. The opening of the Drake Passage in the latest Oligocene to early Miocene (25-20 Ma) resulted in the establishment of the deep circumpolar current, which led to thermal isolation of Antarctica and increased global cooling. This development was associated with a major turnover in planktic organisms, resulting in the evolution of Neogene assemblages and the eventual extinction of Paleogene assemblages. The erosive patterns of two widespread hiatuses (PH, 23.0-22.5 Ma; and NH 1, 20-18 Ma) indicate that a deep circumequatorial circulation existed at this time, characterized by a broad band of carbonate-ooze deposition. Siliceous sedimentation was restricted to the North Atlantic and a narrow band around Antarctica. A major reorganization in deep-sea sedimentation and hiatus distribution patterns occurred near the early/middle Miocene boundary, apparently resulting from changes in oceanic circulation. Beginning at this time, deep-sea erosion occurred throughout the Caribbean (hiatus NH 2, 16-15 Ma), suggesting disruption of the deep circumequatorial circulation and northward deflection of deep currents, and/or intensification of the Gulf Stream. Sediment distribution patterns changed dramatically with the sudden appearance of siliceous-ooze deposition in the marginal and east equatorial North Pacific by 16.0 to 15.5 Ma, coincident with the decline of siliceous sedimentation in the North Atlantic. This silica switch may have been caused by the introduction of Norwegian Overflow Water into the North Atlantic acting as a barrier to outcropping of silica-rich Antarctic Bottom Water. The main aspects of the present oceanic circulation system and sediment distribution pattern were established by 13.5 to 12.5 Ma (hiatus NH 3), coincident with the establishment of a major East Antarctic ice cap. Antarctic glaciation resulted in a broadening belt of siliceous-ooze deposition around Antarctica, increased siliceous sedimentation in the marginal and east equatorial North Pacific and Indian Oceans, and further northward restriction of siliceous sediments in the North Atlantic. Periodic cool climatic events were accompanied by lower eustatic sea levels and widespread deep-sea erosion at 12 to 11 Ma (NH 4), 10 to 9 Ma (NH 5), 7.5 to 6.2 Ma (NH 6), and 5.2 to 4.7 Ma (NH 7).
Resumo:
Data from deep sea drilling, linear magnetic anomalies and bathymetric measurements together with age and morphometric characteristics of seamounts have been used to construct a paleobathymetric map of the oceans 35 million years ago. A brief analysis of these results is presented.
Resumo:
Volumes of interest were published between 1812 and 1815 with articles about the War of 1812.
Resumo:
We examined differences in response latencies obtained during a validated video-based hazard perception driving test between three healthy, community-dwelling groups: 22 mid-aged (35-55 years), 34 young-old (65-74 years), and 23 old-old (75-84 years) current drivers, matched for gender, education level, and vocabulary. We found no significant difference in performance between mid-aged and young-old groups, but the old-old group was significantly slower than the other two groups. The differences between the old-old group and the other groups combined were independently mediated by useful field of view (UFOV), contrast sensitivity, and simple reaction time measures. Given that hazard perception latency has been linked with increased crash risk, these results are consistent with the idea that increased crash risk in older adults could be a function of poorer hazard perception, though this decline does not appear to manifest until age 75+ in healthy drivers.
Resumo:
The aim of this study was to examine the reliability and validity of field tests for assessing physical function in mid-aged and young-old people (55-70 y). Tests were selected that required minimal space and equipment and could be implemented in multiple field settings such as a general practitioner's office. Nineteen participants completed 2 field and I laboratory testing sessions. Intra-class correlations showed good reliability for the tests of upper body strength (lift and reach, R=.66), lower body strength (sit to stand, R=.80) and functional capacity (Canadian Step Test, R=.92), but not for leg power (single timed chair rise, R=.28). There was also good reliability for the balance test during 3 stances: parallel (94.7% agreement), semi-tandem (73.7%), and tandem (52.6%). Comparison of field test results with objective laboratory measures found good validity for the sit to stand (cf 1RM leg press, Pearson r=.68, p <.05), and for the step test (cf PWC140, r = -.60, p <.001), but not for the lift and reach (cf 1RM bench press, r=.43, p >.05), balance (r=-.13, -.18, .23) and rate of force development tests (r=-.28). It was concluded that the lower body strength and cardiovascular function tests were appropriate for use in field settings with mid-aged and young-old adults.
Resumo:
Objectives Recent research has shown that machine learning techniques can accurately predict activity classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test machine learning models for predicting activity type in preschool-aged children. Design Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits. Methods Eleven children aged 3–6 years (mean age = 4.8 ± 0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Results Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, respectively. Conclusions Ensemble machine learning approaches such as Deep Learning Ensemble Network can accurately predict activity type from accelerometer data in preschool children.
Resumo:
Results of a study designed to investigate the possibility of using the Si(111)- Ge(5×5) surface reconstruction as a template for In cluster growth are described. As with Si(111)-7×7, the In adatoms preferentially adsorb in the faulted half-unit cell, but on Si(111)- Ge(5×5) a richer variety of cluster geometries are found. In addition to the clusters that occupy the faulted half-unit cell, clusters that span two and four half-unit cells are found. The latter have a triangular shape spanning one unfaulted and three, nearest neighbor, faulted half-unit cells, Triangular clusters in the opposite orientation were not found. Many of the faulted halfunit cells have a streaked appearance consistent with adatom mobility.
Resumo:
An anomalous variation in the experimental elastic modulus, E, of Ti-6Al-4V-xB (with x up to 0.55 wt.%) is reported. Volume fractions and moduli of the constituent phases were measured using microscopy and nanoindentation,respectively. These were used in simple micromechanical models to examine if the E values could be rationalized. Experimental E values higher than the upper bound estimates suggest complex interplay between microstructural modifications, induced by the addition of B, and properties.