973 resultados para 5-aminolevulinic acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To assess the applicability of photodynamic therapy (PDT) in the management of vulvodynia whereby a novel, patch-type system, loaded with 5-aminolevulinic acid (ALA), was used to administer PDT to vulvar regions displaying the characteristics of vulvodynia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The inclusion 01 chemical penetration enhancers in a novel patch-based system for the delivery of 5-aminolevulinic acid (ALA) was examined in vitro and in vivo. Poor penetration of ALA has been implicated as the primary factor for low response rates achieved with topical ALA-based photodynamic therapy of thicker neoplastic lesions. such as nodular basal cell carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5-Aminolevulinic acid (ALA), a heme precursor that accumulates in acute intermittent porphyria patients and lead-exposed individuals, has previously been shown to autoxidize with generation of reactive oxygen species and to cause in vitro oxidative damage to rat liver mitochondria. We now demonstrate that chronically ALA-treated rats (40 mg/kg body wt every 2 days for 15 days) exhibit decreased mitochondrial enzymatic activities (superoxide dismutase, citrate synthase) in liver and soleus (type I, red) and gastrocnemius (type IIb, white) muscle fibers. Previous adaptation of rats to endurance exercise, indicated by augmented (cytosolic) CuZn-superoxide dismutase (SOD) and (mitochondrial) Mn-SOD activities in several organs, does not protect the animals against liver and soleus mitochondrial damage promoted by intraperitoneal injections of ALA. This is suggested by loss of citrate synthase and Mn-SOD activities and elevation of serum lactate levels, concomitant to decreased glycogen content in soleus and the red portion of gastrocnemius (type IIa) fibers of both sedentary and swimming-trained ALA-treated rats. In parallel, the type IIb gastrocnemius fibers, which are known to obtain energy mainly by glycolysis, do not undergo these biochemical changes. Consistently, ALA-treated rats under swimming training reach fatigue significantly earlier than the control group. These results indicate that ALA may be an important prooxidant in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The objective of this study was to improve the feasibility of applying topic 5-aminolevulinic acid (ALA) in photodiagnosis (PD) and treatment of condyloma caused by human papillomavirus (HPV) using two homemade handheld devices and to discuss the photodynamic therapy (PDT) as a suitable alternative for each of the cases studied. Both, protoporphyrin IX production and photodegradation were analyzed, and the pain experienced during the illumination was correlated with the light intensities. Methods: A total of 40 women with different grades of lesions caused by HPV were chosen from patients of the School of Medicine of Ribeirao Preto (University of Sao Paulo) and of the Unit of Public Health of Araraquara, Sao Paulo. Results: We did not encounter any unexpected difficulties using our devices during the treatment. The existence of an easily observable reddish fluorescence with large intensity concentrated on the Lesions is the clinical indication of the penetration and the selective concentration of protoporphyrin IX in the clinical and subclinical lesions rather than in the healthy tissue. The aesthetic results were much better than those obtained by conventional techniques as surgery or cryogenics, with no recurrence reported after two years of treatment. Conclusions: Our results are proof for the various advantages using ALA cream for the PD and PDT in many different cases of condyloma by HPV. This study will be continued to investigate the PpIX photobleaching and the irradiance and fluence rate to optimize conducting the clinical trials, to improve the devices and therefore increase the treatment response. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is a therapeutic technique mainly applied to the treatment of malignant and pre-malignant lesions, which induces cell death by the combined effect of a photosensitizer, irradiation in a proper wavelength, and molecular oxygen. One of the main limitations of PDT using 5-aminolevulinic acid (ALA) is the superficial volume of treatment, mainly due to the limited penetration of topical photosensitization. In this context, the present study investigates if a laser micromachining producing microchannels on the tissue surface could improve ALA penetration and result in an increase in the treatment depth. The laser micromachining under femtosecond regime was performed on the tissue surface of rat livers. Conventional PDT was applied and the induced depth of necrosis with or without laser micromachining was compared. The results showed an increase of more than 20% in the depth of necrosis when the femtosecond laser micromachining was performed before the treatment with the PDT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) is a skin cancer therapy that still has limitations due to the low penetration of this drug into the skin. We have proposed in this work a delivery system for 5-ALA based on liposomes having lipid composition similar to the mammalian stratum corneum (SCLLs) in order to optimize its skin delivery in Photodynamic Therapy (PDT) of skin cancers. Methods SCLLs were obtained by reverse phase evaporation technique and size distribution of the vesicles was determinated by photon correlation spectroscopy. In vitro permeation profile was characterized using hairless mouse skin mounted in modified Franz diffusion cell. Results Size exclusion chromatography on gel filtration confirmed vesicle formation. SCLLs obtained by presented a degree of encapsulation of 5-ALA around 5.7%. A distribution of vesicle size centering at around 500 nm and 400 nm respectively for SCLLs and SCLLs containing 5-ALA was found. In vitro 5-ALA permeation study showed that SCLLs preparations presented higher skin retention significantly (p < 0.05) on the epidermis without SC + dermis, with a decreasing of skin permeation compared to aqueous solution. Conclusions The in vitro delivery performance provided by SCLLs lead to consider this systems adequate for the 5-ALA-PDT of skin cancer, since SCLLs have delivered 5-ALA to the target skin layers (viable epidermis + dermis) to be treated by topical PDT of skin cancer.