996 resultados para 479-1
Resumo:
PURPOSE To determine whether the scleral stroma is affected as much as the corneal stroma in keratoconus. SETTING University Eye Clinic, Bern, Switzerland. DESIGN Comparative case-control study. METHODS Eyes with keratoconus (keratoconus group) and eyes of age-, sex-, and axial length-matched controls (control group) were analyzed. Corneal videokeratometry and pachymetry were performed using a Scheimpflug tomographer (Pentacam). For measurements of the peripheral cornea and the anterior sclera, a spectral-domain anterior segment optical coherence tomography device (Spectralis) was used. RESULTS The study group comprised 51 eyes and the control group, 50 eyes. The mean central corneal thickness in the keratoconus group was statistically significantly lower than in the control group (447.8 μm ± 57.8 [SD] versus 550.5 ± 35.5 μm) (P < .0001). No significant difference in the mean anterior scleral thickness was found between the keratoconus group and the control group (479.1 ± 43.7 μm versus 474.2 ± 43.0 μm) (P =.57). CONCLUSION Although corneal thinning was observed in keratoconus patients, the anterior scleral stroma thickness in these patients seemed to be similar to that in healthy control eyes.
Resumo:
Large carbonate mound structures have been discovered in the northern Porcupine Seabight (Northeast Atlantic) at depths between 600 and 1000 m. These mounds are associated with the growth of deep-sea corals Lophelia pertusa and Madrepra oculata. In this study, three sediment cores have been analysed. They are from locations close to Propeller Mound, a 150 m high ridge-like feature covered with a cold-water coral ecosystem at its upper flanks. The investigations are concentrated on grain-size analyses, carbon measurements and on the visual description of the cores and computer tomographic images, to evaluate sediment content and structure. The cores portray the depositional history of the past ~31 kyr BP, mainly controlled by sea-level fluctuations and the climate regime with the advance and retreat of the Irish Ice Sheet onto the Irish Mainland Shelf. A first advance of glaciers is indicated by a turbiditic release slightly older than 31 kyr BP, coherent with Heinrich event 3 deposition. During Late Marine Isotope Stage 3 (MIS 3) and MIS 2 shelf erosion prevailed with abundant gravity flows and turbidity currents. A change from glaciomarine to hemipelagic contourite sedimentation during the onset of the Holocene indicates the establishment of the strong, present-day hydrodynamic regime at intermediate depths. The general decrease in accumulation of sediments with decreasing distance towards Propeller Mound suggests that currents (turbidity currents, gravity flows, bottom currents) had a generally stronger impact on the sediment accumulation at the mound base for the past ~31 kyr BP, respectively.
Resumo:
High resolution studies from the Propeller Mound, a cold-water coral carbonate mound in the NE Atlantic, show that this mound consists of >50% carbonate justifying the name "carbonate mound". Through the last ~300,000 years approximately one third of the carbonate has been contributed by cold-water corals, namely Lophelia pertusa and Madrepora oculata. This coral bound contribution to the carbonate budget of Propeller Mound is probably accompanied by an unknown portion of sediments buffered from suspension by the corals. However, extended hiatuses in Propeller Mound sequences only allow the calculation of a net carbonate accumulation. Thus, net carbonate accumulation for the last 175 kyr accounts for only <0.3 g/cm2/kyr, which is even less than for the off-mound sediments. These data imply that Propeller Mound faces burial by hemipelagic sediments as has happened to numerous buried carbonate mounds found slightly to the north of the investigated area.
Resumo:
We detected methanogenic bacterial activity in 6 of 12 sediment samples from Deep Sea Drilling Project (DSDP) locations in the Gulf of California.When samples were incubated anaerobically for three weeks at temperatures of 10 or 22°C, we found activity to sediment depths of about 12 meters. The methanogenic bacteria were inhibited by CHCl3 or 2-bromoethanesulfonic acid and were generally stimulated by H2.